论文标题

在双Quantum-dot电路QED设置中,紧急$ \ Mathcal {pt} $对称性

Emergent $\mathcal{PT}$ symmetry in a double-quantum-dot circuit QED set-up

论文作者

Purkayastha, Archak, Kulkarni, Manas, Joglekar, Yogesh N.

论文摘要

在过去的五年中,具有有效的平等时间($ \ MATHCAL {PT} $)对称性的开放经典和量子系统对激光,传感和非重点设备的进步表现出了巨大的希望。但是,这种有效的$ \ Mathcal {pt} $如何从赫尔米尔量子力学中出现了对称的非热模型。从这里开始,从完全偏僻的微观哈密顿描述开始,我们表明,非热的哈密顿量在双Quantum-Dot-circuit-Qed(DQD-Circuit QED)设置中自然出现,可以控制到$ \ Mathcal {pt} $ - 对称点。这种有效的哈密顿量控制了两个耦合电路腔的动力学,其中一个偶联的DQD具有电压偏置的DQD。我们的分析还揭示了量子波动对$ \ Mathcal {pt} $对称系统的影响。 $ \ Mathcal {pt} $ - 过渡是在腔体观察物的动力学以及通过输入输出实验中观察到的。作为$ \ Mathcal {pt} $ - 在此设置中的过渡的简单应用,我们表明可以在耦合的腔体中观察到损失诱导的扩增和激光的增强。通过将我们的结果与两个常规的局部Lindblad方程进行比较,我们证明了后者的效用和局限性。我们的结果为具有量子制度增益介质及其潜在的量子技术应用的潜在可伸缩的非富裕系统的芯片实现铺平了道路。

Open classical and quantum systems with effective parity-time ($\mathcal{PT}$) symmetry, over the past five years, have shown tremendous promise for advances in lasers, sensing, and non-reciprocal devices. And yet, how such effective $\mathcal{PT}$-symmetric non-Hermitian models emerge out of Hermitian quantum mechanics is not well understood. Here, starting from a fully Hermitian microscopic Hamiltonian description, we show that a non-Hermitian Hamiltonian emerges naturally in a double-quantum-dot-circuit-QED (DQD-circuit QED) set-up, which can be controllably tuned to the $\mathcal{PT}$-symmetric point. This effective Hamiltonian governs the dynamics of two coupled circuit-QED cavities with a voltage-biased DQD in one of them. Our analysis also reveals the effect of quantum fluctuations on the $\mathcal{PT}$ symmetric system. The $\mathcal{PT}$-transition is, then, observed both in the dynamics of cavity observables as well as via an input-output experiment. As a simple application of the $\mathcal{PT}$-transition in this set-up, we show that loss-induced enhancement of amplification and lasing can be observed in the coupled cavities. By comparing our results with two conventional local Lindblad equations, we demonstrate the utility and limitations of the latter. Our results pave the way for an on-chip realization of a potentially scalable non-Hermitian system with a gain medium in quantum regime, as well as its potential applications for quantum technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源