论文标题
量化在感染热点存在下接触示意,测试和遏制度量的影响
Quantifying the Effects of Contact Tracing, Testing, and Containment Measures in the Presence of Infection Hotspots
论文作者
论文摘要
多种证据强烈表明,一个人感染了许多其他人,在Covid-19的传播动力学中起着关键作用。但是,大多数现有的流行病学模型都无法通过明确代表个人访问的地点而不是将疾病传播表征为个体流动性模式的函数,从而无法捕获这一方面。在这项工作中,我们介绍了一个时间点过程建模框架,该框架专门代表对个人接触并相互感染的站点的访问。在我们的模型下,自然而然地出现了由感染性人引起的感染数量。使用有效的抽样算法,我们演示了如何使用贝叶斯优化和纵向案例数据来估计他们访问的地点以及家庭中传染性个体的传播率。使用瑞士伯尔尼的细粒度和公共人口统计数据和现场位置的模拟展示了我们框架的灵活性。为了促进对其他城市和地区的研究和分析,我们发布了框架的开源实施。
Multiple lines of evidence strongly suggest that infection hotspots, where a single individual infects many others, play a key role in the transmission dynamics of COVID-19. However, most of the existing epidemiological models fail to capture this aspect by neither representing the sites visited by individuals explicitly nor characterizing disease transmission as a function of individual mobility patterns. In this work, we introduce a temporal point process modeling framework that specifically represents visits to the sites where individuals get in contact and infect each other. Under our model, the number of infections caused by an infectious individual naturally emerges to be overdispersed. Using an efficient sampling algorithm, we demonstrate how to estimate the transmission rate of infectious individuals at the sites they visit and in their households using Bayesian optimization and longitudinal case data. Simulations using fine-grained and publicly available demographic data and site locations from Bern, Switzerland showcase the flexibility of our framework. To facilitate research and analyses of other cities and regions, we release an open-source implementation of our framework.