论文标题

在坚固的景观上进军:无序不对称排除过程

Marching on a rugged landscape: Universality in disordered asymmetric exclusion processes

论文作者

Haldar, Astik, Basu, Abhik

论文摘要

我们开发了具有短距离随机淬灭的跳跃速率的数量保存的流体动力学理论,这是一维的Kardar-Parisi-Zhang(KPZ)方程,并具有淬灭的柱状疾病。我们表明,当系统远离半填充时,密度波动的通用时空尺度与其纯对应物是无法区分的,该模型属于一维Kardar-Parisi-parisi-Zhang通用类。相比之下,接近一半的填充,淬火疾病是相关的,导致了新的普遍性类别。我们实际上认为,远离半填充时淬火疾病的无关紧要是系统中传播密度波动平均疾病的结果。相比之下,近半填充密度波动被过度阻尼,因此受到淬火障碍的强烈影响。

We develop the hydrodynamic theory for number conserving asymmetric exclusion processes with short-range random quenched disordered hopping rates, which is one-dimensional Kardar-Parisi- Zhang (KPZ) equation with quenched columnar disorder. We show that when the system is away from half-filling, the universal spatio-temporal scaling of the density fluctuations is indistinguishable from its pure counterpart, with the model belonging to the one-dimensional Kardar-Parisi-Zhang universality class. In contrast, close to half-filling, the quenched disorder is relevant, leading to a new universality class. We physically argue that the irrelevance of the quenched disorder when away from half-filling is a consequence of the averaging of the disorder by the propagating density fluctuations in the system. In contrast, close to half-filling the density fluctuations are overdamped, and as a result, are strongly influenced by the quenched disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源