论文标题
最大程度地降低依赖量表的星系偏差对大规模结构的关节宇宙学分析的影响
Minimising the impact of scale-dependent galaxy bias on the joint cosmological analysis of large scale structures
论文作者
论文摘要
我们提出了一种缓解策略,以减少非线性星系偏差对弱透镜和星系调查的宇宙学分析的关节'$ 3 \ times 2 $ pt'的影响。我们采用的$ψ$统计数据基于E/B积分(Cosebis)的完整正交集。因此,它们旨在最大程度地减少对模型高度不确定的最小物理尺度的可观察到的贡献。我们证明,$ψ$统计量具有与标准的两点星系聚类和星系 - 半镜头镜头统计量相同的约束功率,但对依赖尺度依赖性星系偏置的敏感性明显较小。使用两个Galaxy偏差模型,该模型由Halo-Model拟合数据和仿真,我们量化了假定恒定星系偏置的标准$ 3 \ times 2 $ PT分析中的误差。即使采用了保守的角度剪切,也会降低整体宇宙参数约束,我们发现订单$1σ$偏见的第三阶段调查是宇宙学参数$ s_8 =σ_8=σ_8(ω__{\ rm M} /0.3)^α$。这是由于最小的物理尺度泄漏到标准的两点相关函数中所有角度尺度的泄漏。相比之下,当在恒定星系偏差的相同近似值下分析$ψ$统计量时,我们表明,$ s_8 $的恢复值的偏差可以降低$ \ sim 2 $,而保守的比例降低较小。鉴于在高度非线性方案中确定准确的星系偏差模型时面临的挑战,我们认为$ 3 \ times 2 $ pt分析应朝着对最小物理量表敏感的新统计数据迈进。
We present a mitigation strategy to reduce the impact of non-linear galaxy bias on the joint `$3 \times 2 $pt' cosmological analysis of weak lensing and galaxy surveys. The $Ψ$-statistics that we adopt are based on Complete Orthogonal Sets of E/B Integrals (COSEBIs). As such they are designed to minimise the contributions to the observable from the smallest physical scales where models are highly uncertain. We demonstrate that $Ψ$-statistics carry the same constraining power as the standard two-point galaxy clustering and galaxy-galaxy lensing statistics, but are significantly less sensitive to scale-dependent galaxy bias. Using two galaxy bias models, motivated by halo-model fits to data and simulations, we quantify the error in a standard $3 \times 2$pt analysis where constant galaxy bias is assumed. Even when adopting conservative angular scale cuts, that degrade the overall cosmological parameter constraints, we find of order $1 σ$ biases for Stage III surveys on the cosmological parameter $S_8 = σ_8(Ω_{\rm m}/0.3)^α$. This arises from a leakage of the smallest physical scales to all angular scales in the standard two-point correlation functions. In contrast, when analysing $Ψ$-statistics under the same approximation of constant galaxy bias, we show that the bias on the recovered value for $S_8$ can be decreased by a factor of $\sim 2$, with less conservative scale cuts. Given the challenges in determining accurate galaxy bias models in the highly non-linear regime, we argue that $3 \times 2$pt analyses should move towards new statistics that are less sensitive to the smallest physical scales.