论文标题

恒星质量基本平面:病毒关系和慢旋转器的非常薄的平面

The Stellar Mass Fundamental Plane: The virial relation and a very thin plane for slow-rotators

论文作者

Bernardi, M., Sanchez, H. Domínguez, Margalef-Bentabol, B., Nikakhtar, F., Sheth, R. K.

论文摘要

早期型星系 - 缓慢而快速旋转的椭圆形(E-SRS和E-FRS)和S0S/LENTICULAN-在半光线半径$ R_E $的空间中定义了基本平面(FP),封闭的表面亮度$ i_e $ i_e $ and velocity分散分散$σ_e$。由于$ i_e $和$σ_e$是独立于距离的测量值,因此FP的厚度通常以$ i_e $和$σ_e$的准确性表示,可用于估算$ r_e $。我们表明:1)FP的厚度在很大程度上取决于形态。如果样本仅包括E-SR,则在$ r_e $中观察到的散布为$ \ sim 16 \%$,其中$ \ sim 9 \%$是固有的。用$ M _*<10^{11} m_ \ odot $删除星系,进一步将观察到的散布降低到$ \ sim 13 \%$($ \ sim 4 \%$ $ instric)。如果添加E-FRS和S0,则观察到的散布增加到文献中通常引用的$ \ sim 25 \%$。如果使用可观测值的协方差矩阵定义FP,则E-SRS再次定义了一个异常薄的FP,固有的散布仅为$ 5 \%$ $ orthoctos to emplanal。 2)FP内的结构最容易理解为$ i_e $和$σ_e$几乎是独立的,而$ r_e-i_e $和$ r_e-σ_e$相关性几乎相等且相反。 3)如果FP的系数与与病毒定理相关的系数不同,则据说平面是“倾斜”。如果我们将$ i_e $乘以全球出色的质量质量与光比$ m _*/l $,并且我们使用Sérsic光度法来解释整个人群中的非同学,那么所得的出色质量FP的倾斜度较小。以$ m _*/l $梯度为$ m _*/l $渐变会改变倾斜度。我们目前看到的倾斜度表明,随着恒星表面亮度的增加,将重子变成恒星的效率增加和/或暗物质分数会减少。

Early-type galaxies -- slow and fast rotating ellipticals (E-SRs and E-FRs) and S0s/lenticulars -- define a Fundamental Plane (FP) in the space of half-light radius $R_e$, enclosed surface brightness $I_e$ and velocity dispersion $σ_e$. Since $I_e$ and $σ_e$ are distance-independent measurements, the thickness of the FP is often expressed in terms of the accuracy with which $I_e$ and $σ_e$ can be used to estimate sizes $R_e$. We show that: 1) The thickness of the FP depends strongly on morphology. If the sample only includes E-SRs, then the observed scatter in $R_e$ is $\sim 16\%$, of which only $\sim 9\%$ is intrinsic. Removing galaxies with $M_*<10^{11}M_\odot$ further reduces the observed scatter to $\sim 13\%$ ($\sim 4\%$ intrinsic). The observed scatter increases to the $\sim 25\%$ usually quoted in the literature if E-FRs and S0s are added. If the FP is defined using the eigenvectors of the covariance matrix of the observables, then the E-SRs again define an exceptionally thin FP, with intrinsic scatter of only $5\%$ orthogonal to the plane. 2) The structure within the FP is most easily understood as arising from the fact that $I_e$ and $σ_e$ are nearly independent, whereas the $R_e-I_e$ and $R_e-σ_e$ correlations are nearly equal and opposite. 3) If the coefficients of the FP differ from those associated with the virial theorem the plane is said to be `tilted'. If we multiply $I_e$ by the global stellar mass-to-light ratio $M_*/L$ and we account for non-homology across the population by using Sérsic photometry, then the resulting stellar mass FP is less tilted. Accounting self-consistently for $M_*/L$ gradients will change the tilt. The tilt we currently see suggests that the efficiency of turning baryons into stars increases and/or the dark matter fraction decreases as stellar surface brightness increases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源