论文标题

使用所有天空光学观测值来自动轨道测定和低地球轨道中的卫星的预测

Using all-sky optical observations for automated orbit determination and prediction for satellites in Low Earth Orbit

论文作者

Wijnen, T. P. G., Stuik, R., Rodenhuis, M., Langbroek, M., Wijnja, P.

论文摘要

我们已经使用了现有的机器人,多镜,全套相机系统,并耦合到专用数据减少管道,以自动确定低地球轨道(LEO)中卫星的轨道参数。每个固定摄像机的视野为53 x 74度,而五个摄像机则将整个天空覆盖到地平线下降到20度。每个摄像机每6.4秒拍摄一次图像,然后自动处理和存储图像。我们已经开发了一种自动数据减少管道,该管道识别卫星轨道,以像素级别的准确性($ \ sim $ 0.02度),并使用其端点以标准化的两个线元素(TLE)的形式确定轨道元素。使用现有算法(例如Hough Transform和Ransac方法)的例程可在任何光学数据集上使用。 对于带有未知tle的卫星,我们至少需要两个偏高才能准确预测下一个。例如,可以在每次通过时都可以完善已知的TLE,以改善碰撞检测或轨道衰减预测。对于我们当前的数据分析,我们一直专注于狮子座的卫星,在暮光期间,我们能够恢复50%至80%的已知立交桥。我们已经能够将Leo卫星降低到第7次视觉幅度。在视觉上观察到了较高的物体,直至地球同步轨道,但目前没有被我们的还原管道自动拾取。我们希望,通过进一步改进我们的数据减少,并且可能在更长的集成时间和/或不同的光学元件中,可以使用仪器设置来跟踪大量的卫星,直到地球同步轨道。

We have used an existing, robotic, multi-lens, all-sky camera system, coupled to a dedicated data reduction pipeline, to automatically determine orbital parameters of satellites in Low Earth Orbit (LEO). Each of the fixed cameras has a Field of View of 53 x 74 degrees, while the five cameras combined cover the entire sky down to 20 degrees from the horizon. Each of the cameras takes an image every 6.4 seconds, after which the images are automatically processed and stored. We have developed an automated data reduction pipeline that recognizes satellite tracks, to pixel level accuracy ($\sim$ 0.02 degrees), and uses their endpoints to determine the orbital elements in the form of standardized Two Line Elements (TLEs). The routines, that use existing algorithms such as the Hough transform and the Ransac method, can be used on any optical dataset. For a satellite with an unknown TLE, we need at least two overflights to accurately predict the next one. Known TLEs can be refined with every pass to improve collision detections or orbital decay predictions, for example. For our current data analysis we have been focusing on satellites in LEO, where we are able to recover between 50% and 80% of the known overpasses during twilight. We have been able to detect LEO satellites down to 7th visual magnitude. Higher objects, up to geosynchronous orbit, were visually observed, but are currently not being automatically picked up by our reduction pipeline. We expect that with further improvements to our data reduction, and potentially with longer integration times and/or different optics, the instrumental set-up can be used for tracking a significant fraction of satellites up to geosynchronous orbit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源