论文标题

在湍流通道流中板的响应:分析流体固体耦合

Response of a plate in turbulent channel flow: Analysis of fluid-solid coupling

论文作者

Anantharamu, Sreevatsa, Mahesh, Krishnan

论文摘要

该纸进行模拟,以180和400的摩擦雷诺数在湍流通道流动激发的矩形板上。假定流体结构的相互作用是单向耦合的,即流体会影响固体,而不是杀伤。我们使用流体域中的有限体积直接数值模拟来求解不可压缩的Navier Stokes方程。在实心域中,我们使用时域有限元法解决了动态线性弹性方程。在低频区域中,获得的板平均位移光谱塌陷在外部缩放区域中。但是,高频频谱水平不会在内部单元中崩溃。使用理论论点来理解这种光谱行为。我们进一步研究了使用一种新型公式的板兴激励来源。该公式表示板的平均位移光谱是通道内流体源的综合贡献。对净位移来源的分析表明,在板固体频率下,流体源对缓冲层中板激发峰的贡献。发现相应的壁正常宽度约为$ \0.75δ$。我们使用净位移源的光谱正交分解(POD)分析了源的非相关特征。我们在内部产品中强制使用具有对称的正定核的模式的正交性。显性光谱POD模式有助于整个板的激发。来自不同壁正常区域的其余模式的贡献会受到破坏性干扰,导致净贡献为零。主导模式的包络进一步表明,贡献的位置和宽度分别取决于内部和外部单位。

The paper performs simulation of a rectangular plate excited by turbulent channel flow at friction Reynolds numbers of 180 and 400. The fluid-structure interaction is assumed to be one-way coupled, i.e, the fluid affects the solid and not vice versa. We solve the incompressible Navier Stokes equations using finite volume direct numerical simulation in the fluid domain. In the solid domain, we solve the dynamic linear elasticity equations using a time-domain finite element method. The obtained plate averaged displacement spectra collapse in the low frequency region in outer scaling. However, the high frequency spectral levels do not collapse in inner units. This spectral behavior is reasoned using theoretical arguments. We further study the sources of plate excitation using a novel formulation. This formulation expresses the average displacement spectra of the plate as an integrated contribution from the fluid sources within the channel. Analysis of the net displacement source reveals that at the plate natural frequencies, the contribution of the fluid sources to the plate excitation peaks in the buffer layer. The corresponding wall-normal width is found to be $\approx 0.75δ$. We analyze the decorrelated features of the sources using spectral Proper Orthogonal Decomposition (POD) of the net displacement source. We enforce the orthogonality of the modes in an inner product with a symmetric positive definite kernel. The dominant spectral POD mode contributes to the entire plate excitation. The contribution of the remaining modes from the different wall-normal regions undergo destructive interference resulting in zero net contribution. The envelope of the dominant mode further shows that the location and width of the contribution depend on inner and outer units, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源