论文标题

预期的雅各布类型的除数

Divisors of expected Jacobian type

论文作者

Montaner, Josep Àlvarez, Planas-Vilanova, Francesc

论文摘要

雅各布理想是线性类型的除数由于与D模块理论的联系而引起了很多关注。在这项工作中,我们对预期的雅各布类型的除数感兴趣,即,梯度理想是线性类型的分隔线,其雅各布理想的关系类型与相对于梯度理想加一个的减少数量相吻合。我们提供条件,以便能够准确描述雅各布理想的REES代数方程。我们还将Jacobian理想的关系类型与Kashiwara操作员程度给出的一些D模块理论不变性相关联。

Divisors whose Jacobian ideal is of linear type have received a lot of attention recently because of its connections with the theory of D-modules. In this work we are interested on divisors of expected Jacobian type, that is, divisors whose gradient ideal is of linear type and the relation type of its Jacobian ideal coincides with the reduction number with respect to the gradient ideal plus one. We provide conditions in order to be able to describe precisely the equations of the Rees algebra of the Jacobian ideal. We also relate the relation type of the Jacobian ideal to some D-module theoretic invariant given by the degree of the Kashiwara operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源