论文标题

强烈倾斜的多体系统中的普遍细节

Universal subdiffusion in strongly tilted many-body systems

论文作者

Zhang, Pengfei

论文摘要

远离平衡的量子动力学对于相互作用的多体系统具有根本兴趣。在这封信中,我们使用从微观描述中得出的有效的哈密顿量研究了倾斜的多体系统。我们首先给出有关满足$ 1/τ\ propto k^4 $的密度放松率的一般性论点,包括最近的实验中观察到的,包括费米哈伯德模型案例[1]。这里$ k $是密度波的波向量。主要成分是反射对称性和偶极矩守恒的出现,降低了大倾斜强度的主要非平凡阶。为了支持我们的分析,我们通过耦合Sachdev-Ye-Kitaev模型所描述的位点,构建一个具有较大局部希尔伯特空间维度的可解决模型,可以在其中明确计算密度响应。还讨论了延伸常数的倾斜强度和温度依赖性。

The quantum dynamics away from equilibrium is of fundamental interest for interacting many-body systems. In this letter, we study tilted many-body systems using the effective Hamiltonian derived from the microscopic description. We first give general arguments for the density relaxation rate satisfying $1/τ\propto k^4$ for a large class of systems, including the Fermi Hubbard model case as observed in the the recent experiment [1]. Here $k$ is the wave vector of the density wave. The main ingredients are the emergence of the reflection symmetry and dipole moment conservation to the leading non-trivial order of the large tilted strength. To support our analysis, we then construct a solvable model with large local Hilbert space dimension by coupling sites discribed by the Sachdev-Ye-Kitaev models, where the density response can be computed explicitly. The the tilt strength and the temperature dependence of the subdiffusion constant are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源