论文标题
机器学习材料的亚稳相图
Machine Learning the Metastable Phase Diagram of Materials
论文作者
论文摘要
相图是材料合成的宝贵工具,并在任何给定的热力学条件下提供有关材料相的信息。传统的相图生成涉及实验,以提供热力学上可访问阶段的初始估计,然后使用现象学模型在可用的实验数据点之间插值并推断到无法接近的区域。这种方法,结合第一原理的计算和数据挖掘技术,导致了详尽的热力学数据库,尽管在不同的热力学平衡处。相比之下,材料在合成,操作或加工过程中可能无法达到其热力学平衡状态,而是仍被困在局部自由能最小值中,可能表现出理想的特性。绘制这些亚稳态及其热力学行为是非常可取的,但目前缺乏。在这里,我们介绍了一个自动化工作流,该工作流将第一原理与机器学习(ML)和高性能计算集成在一起,以快速探索给定元素组成的亚电阶段。使用代表性的材料,碳,具有大量的亚稳态相位,没有父母的平衡,我们证明了数百个亚稳态的自动映射,范围从几乎均衡到那些遥远的平衡。此外,我们将自由能计算纳入基于神经网络的状态方程式中,以构建亚稳态相图。高温高压实验使用石墨样品上的钻石砧细胞与高分辨率透射电子显微镜相结合,以验证我们的亚稳态相预测。我们引入的方法是一般的,并且广泛适用于单一和多组件系统。
Phase diagrams are an invaluable tool for material synthesis and provide information on the phases of the material at any given thermodynamic condition. Conventional phase diagram generation involves experimentation to provide an initial estimate of thermodynamically accessible phases, followed by use of phenomenological models to interpolate between the available experimental data points and extrapolate to inaccessible regions. Such an approach, combined with first-principles calculations and data-mining techniques, has led to exhaustive thermodynamic databases albeit at distinct thermodynamic equilibria. In contrast, materials during their synthesis, operation, or processing, may not reach their thermodynamic equilibrium state but, instead, remain trapped in a local free energy minimum, that may exhibit desirable properties. Mapping these metastable phases and their thermodynamic behavior is highly desirable but currently lacking. Here, we introduce an automated workflow that integrates first principles physics and atomistic simulations with machine learning (ML), and high-performance computing to allow rapid exploration of the metastable phases of a given elemental composition. Using a representative material, carbon, with a vast number of metastable phases without parent in equilibrium, we demonstrate automatic mapping of hundreds of metastable states ranging from near equilibrium to those far-from-equilibrium. Moreover, we incorporate the free energy calculations into a neural-network-based learning of the equations of state that allows for construction of metastable phase diagrams. High temperature high pressure experiments using a diamond anvil cell on graphite sample coupled with high-resolution transmission electron microscopy are used to validate our metastable phase predictions. Our introduced approach is general and broadly applicable to single and multi-component systems.