论文标题

在Steenrod $ \ Mathbb {l} $ - 同源性,广义流形和手术

On Steenrod $\mathbb{L}$-homology, generalized manifolds, and surgery

论文作者

Hegenbarth, Friedrich, Repovš, Dušan

论文摘要

本文的目的是展示同源理论的Steenrod构建对于在广义$ n $ -Manifold $ x^n $上进行拆卸过程的重要性,以产生广义同源理论的元素,这是计算基础的。特别是,我们展示了如何构造$ n $ - th steenrod同源性组$ h^{st} _ {n}(x^{n},\ mathbb {l}^+),$ where $ \ m athbb {l}^+$是$ $ $ $ $ $ $ \ \ \ $ \ n $ seperigre Spectrum $ \ \ mather的相关范围。分裂程序,标准用于拓扑歧管的手术。

The aim of this paper is to show the importance of the Steenrod construction of homology theories for the disassembly process in surgery on a generalized $n$-manifold $X^n$, in order to produce an element of generalized homology theory, which is basic for calculations. In particular, we show how to construct an element of the $n$-th Steenrod homology group $H^{st}_{n} (X^{n}, \mathbb{L}^+),$ where $\mathbb{L}^+$ is the connected covering spectrum of the periodic surgery spectrum $\mathbb{L}$, avoiding the use of the geometric splitting procedure, which is standardly used in surgery on topological manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源