论文标题
用阿尔玛约束MHD磁盘风。明显的旋转签名和对HH212的应用
Constraining MHD disk winds with ALMA. Apparent rotation signatures and application to HH212
论文作者
论文摘要
大型毫米干涉仪揭示了越来越多的旋转流出量,这些旋转流出仪建议追踪磁中心磁盘风(MHD DWS)。但是,它们对磁盘积聚的影响尚未得到很好的量化。在这里,我们从明显的旋转特征中确定了检索真正的发射区,磁性杆臂和MHD DW的角动量通量时的系统偏见。合成位置速度切割是由自相似MHD DW在广泛参数上构建的,并应用了三种不同的方法来估计特定的角动量。我们发现,使用Anderson等人的众所周知的关系推断出了发射半径。 (2006年)与DW的真正最外部发射半径$ r_ {out} $明显不同。 “双峰分离”和“流宽度”方法仅提供严格的下限至$ r_ {out} $。这种偏见与角度分辨率无关,并且可以达到十倍。相比之下,当流动良好时,“旋转曲线”方法给出了$ r_ {out} $的良好估计,否则却是上限。磁性杆臂始终被低估。只有与合成预测的比较才能正确考虑所有观察效应。作为应用程序,我们对在250 au到16 au的分辨率上的ALMA观察结果进行了比较,该分辨率是迄今为止MHD DW的最严格的观测测试。该比较证实了我们对双峰分离方法的预测偏见,以及大型$ r_ {out} \ sim40〜 $ au和小磁杆臂首先由Tabone等人提出。 (2017)。我们还得出了通过给定径向范围,磁性杠杆臂和质量通量的MHD磁盘风提取的磁盘角动量比例的第一个准确的分析表达。在HH212上的应用证实,MHD DWS是年轻磁盘中稳定的角动量提取过程的严重候选者。
Large millimeter interferometers are revealing a growing number of rotating outflows, which are suggested to trace magneto-centrifugal disk winds (MHD DWs). However, their impact on disk accretion is not yet well quantified. Here we identify systematic biases in retrieving the true launch zone, magnetic lever arm, and angular momentum flux of an MHD DW from apparent rotation signatures. Synthetic position-velocity cuts are constructed from self-similar MHD DWs over a broad range of parameters, and three different methods are applied for estimating the specific angular momentum. We find that the launch radius inferred using the well-known relation from Anderson et al. (2006) can markedly differ from the true outermost launch radius $r_{out}$ of the DW. The "double-peak separation" and "flow width" methods provide only a strict lower limit to $r_{out}$. This bias is independent of angular resolution and can reach a factor ten. In contrast, the "rotation curve" method gives a good estimate of $r_{out}$ when the flow is well resolved, and an upper limit otherwise. The magnetic lever arm is always underestimated. Only comparison with synthetic predictions can take into account properly all observational effects. As an application, we present a comparison with ALMA observations of HH212 at resolutions from 250 au to 16 au, which represents the most stringent observational test of MHD DW to date. This comparison confirms our predicted biases for the double-peak separation method, and the large $r_{out}\sim40~$au and small magnetic lever arm first suggested by Tabone et al. (2017). We also derive the first accurate analytical expression for the fraction of disk angular momentum extracted by an MHD disk wind of given radial extent, magnetic lever arm, and mass flux. Application to HH212 confirms that MHD DWs are serious candidates for the steady angular momentum extraction process in young disks.