论文标题
S框架差异校正模型,用于数据信息的雷诺应力闭合
S-Frame Discrepancy Correction Models for Data-Informed Reynolds Stress Closure
论文作者
论文摘要
尽管有众所周知的局限性,但RANS模型仍然是最常用的工具,用于建模工程实践中的动荡流。 RANS模型是基于RANS方程的解决方案的,但是这些方程式涉及未封闭的术语,即雷诺应力张量,必须对其进行建模。雷诺应力张量通常被建模为平均流场变量和湍流变量的代数函数。这引入了模型预测的雷诺应力张量与精确的雷诺应力张量之间的差异。这种差异可能导致平均流场预测不准确。在本文中,我们介绍了一种数据信息,用于以提高预测性能到达Reynolds应力模型。我们的方法依赖于学习雷诺的组件应力差异张量与给定的雷诺应激模型相关的平均应变率特征征框。这些组件通常是顺利的,因此使用最先进的机器学习策略和回归技术简单地学习。我们的方法会自动产生对称的雷诺应力模型,并产生雷诺应力模型,这些雷诺应力模型既是加利利人和框架不变的,只要输入本身就是galilean和框架不变的。为了达到差异张量的可计算模型,我们采用了前馈神经网络和一个涵盖平均应变率张量的完整性基础的输入空间,平均旋转率张量,平均压力梯度和湍流动能能量梯度,我们引入了一个尺寸降低输入空间的框架。数值结果说明了针对数据信息雷诺的拟议方法的有效性,该方法对于增加复杂性的一系列湍流问题套件。
Despite their well-known limitations, RANS models remain the most commonly employed tool for modeling turbulent flows in engineering practice. RANS models are predicated on the solution of the RANS equations, but these equations involve an unclosed term, the Reynolds stress tensor, which must be modeled. The Reynolds stress tensor is often modeled as an algebraic function of mean flow field variables and turbulence variables. This introduces a discrepancy between the Reynolds stress tensor predicted by the model and the exact Reynolds stress tensor. This discrepancy can result in inaccurate mean flow field predictions. In this paper, we introduce a data-informed approach for arriving at Reynolds stress models with improved predictive performance. Our approach relies on learning the components of the Reynolds stress discrepancy tensor associated with a given Reynolds stress model in the mean strain-rate tensor eigenframe. These components are typically smooth and hence simple to learn using state-of-the-art machine learning strategies and regression techniques. Our approach automatically yields Reynolds stress models that are symmetric, and it yields Reynolds stress models that are both Galilean and frame invariant provided the inputs are themselves Galilean and frame invariant. To arrive at computable models of the discrepancy tensor, we employ feed-forward neural networks and an input space spanning the integrity basis of the mean strain-rate tensor, the mean rotation-rate tensor, the mean pressure gradient, and the turbulent kinetic energy gradient, and we introduce a framework for dimensional reduction of the input space to further reduce computational cost. Numerical results illustrate the effectiveness of the proposed approach for data-informed Reynolds stress closure for a suite of turbulent flow problems of increasing complexity.