论文标题

黑暗,超越深:与人类般的常识转向认知AI的范式

Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike Common Sense

论文作者

Zhu, Yixin, Gao, Tao, Fan, Lifeng, Huang, Siyuan, Edmonds, Mark, Liu, Hangxin, Gao, Feng, Zhang, Chi, Qi, Siyuan, Wu, Ying Nian, Tenenbaum, Joshua B., Zhu, Song-Chun

论文摘要

深度学习的最新进展本质上是基于“小型任务的大数据”范式,根据该范式,大量数据用于训练分类器以完成一个狭窄的任务。在本文中,我们呼吁转变将此范式颠倒。具体来说,我们提出了一个“大型任务的小数据”范式,其中挑战单个人工智能(AI)系统要开发“常识”,从而使其能够在很少的培训数据中解决广泛的任务。我们通过回顾了常识模型来说明这种新范式的潜在力量,这些模型综合了机器和人类视觉的最新突破。我们将功能,物理,意图,因果关系和效用(FPICU)确定为具有人类常识的认知AI的五个核心领域。当被视为统一概念时,FPICU关注的是“为什么”和“如何”,超出主导权利的“什么”和“何处”框架以理解视觉的框架。它们在像素方面是看不见的,但仍可以推动视觉场景的创建,维护和开发。因此,我们将他们构成视觉的“暗物质”。正如无法仅仅研究可观察的问题而无法理解我们的宇宙一样,我们认为如果不研究FPICU,就无法理解视力。我们通过展示了如何使用培训数据来观察和应用FPICU来解决与人类般的常识,以较少的培训数据来解决广泛的挑战任务,包括工具使用,计划,实用性推断和社交学习,从而证明了这种观点具有人类常识的认知AI系统的力量。总而言之,我们认为下一代AI必须接受解决新任务的“黑暗”常识。

Recent progress in deep learning is essentially based on a "big data for small tasks" paradigm, under which massive amounts of data are used to train a classifier for a single narrow task. In this paper, we call for a shift that flips this paradigm upside down. Specifically, we propose a "small data for big tasks" paradigm, wherein a single artificial intelligence (AI) system is challenged to develop "common sense", enabling it to solve a wide range of tasks with little training data. We illustrate the potential power of this new paradigm by reviewing models of common sense that synthesize recent breakthroughs in both machine and human vision. We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense. When taken as a unified concept, FPICU is concerned with the questions of "why" and "how", beyond the dominant "what" and "where" framework for understanding vision. They are invisible in terms of pixels but nevertheless drive the creation, maintenance, and development of visual scenes. We therefore coin them the "dark matter" of vision. Just as our universe cannot be understood by merely studying observable matter, we argue that vision cannot be understood without studying FPICU. We demonstrate the power of this perspective to develop cognitive AI systems with humanlike common sense by showing how to observe and apply FPICU with little training data to solve a wide range of challenging tasks, including tool use, planning, utility inference, and social learning. In summary, we argue that the next generation of AI must embrace "dark" humanlike common sense for solving novel tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源