论文标题
宇宙早期真空到晚期深色能量的量子离散水平
Quantum Discrete Levels of the Universe from the Early Trans-Planckian Vacuum to the Late Dark Energy
论文作者
论文摘要
宇宙的标准模型在通货膨胀与观察结果,经典量子重力二元性和量子时空一致之前,在通货膨胀率上及时进一步完成。量子真空能弯曲时空,并产生恒定的曲率DE Sitter背景。我们将Sitter Universe和宇宙学常数与(经典和量子)谐波振荡器联系起来。发现量子离散的宇宙学水平:大小,时间,真空能量,哈勃常数和引力(吉本·鹰)熵从非常早期的trans-Planckian真空到当今的古典真空能量。对于每个级别,$ n = 0、1、2,... $,两个:帖子和pre(trans) - planckian阶段涵盖:在planckian后宇宙中,(以普朗克单位为单位)为:Hubble常数$ h_ {n} = {n} = {1}/\ sqrt {(2n + 1)$,$ n $ n $ n $ n $ n/$ n/$ {2n + 1)熵$ s_n =(2n + 1)$。随着$ n $的增加,半径,质量和$ s_n $增加,$ h_n $和$λ_n$降低,{\ it一直}宇宙{\ it Classicalize}。在Pre-Planckian(Trans-Planckian)阶段中,量子级别为:$ h_ {qn} = \ sqrt {(2n + 1)},\; λ_{qn} =(2n + 1)/1,\; s_ {qn} = 1/(2n + 1)$,$ q $表示量子。 The $n$-levels cover {\it all} scales from the far past highest excited trans-planckian level $n = 10^{122}$ with finite curvature, $Λ_Q = 10^{122}$ and minimum entropy $S_Q = 10^{-122}$, $n$ decreases till the planck level $(n = 0)$ and enters the post-planckian phase例如:$ n = 1,2,...,n_ {通货膨胀} = 10^{12},...,n_ {cmb} = 10^{114},...,n_ {reoin} = 10^{118},... $λ_{today} = 10^{ - 122} $,$ s_ {today} = 10^{122} $。在这种情况下,我们实现了Snyder-yang代数,从而产生了一致的群体理论实现量子离散的安慰剂时空,经典的Quantum重力二元性对称性和澄清的统一图片(删节)。
The standard model of the universe is further completed back in time before inflation in agreement with observations, classical-quantum gravity duality and quantum space-time. Quantum vacuum energy bends the space-time and produces a constant curvature de Sitter background. We link de Sitter universe and the cosmological constant to the (classical and quantum) harmonic oscillator. Quantum discrete cosmological levels are found: size, time, vacuum energy, Hubble constant and gravitational (Gibbons-Hawking) entropy from the very early trans-planckian vacuum to the classical today vacuum energy. For each level $n = 0, 1, 2,...$, the two: post and pre (trans)-planckian phases are covered: In the post-planckian universe, the levels (in planck units) are: Hubble constant $H_{n} = {1}/\sqrt{(2n + 1)}$, vacuum energy $Λ_{n} = 1/(2n + 1)$, entropy $S_n = (2n + 1)$. As $n$ increases, radius, mass and $S_n$ increase, $H_n$ and $Λ_n$ decrease and {\it consistently} the universe {\it classicalizes}. In the pre-planckian (trans-planckian) phase, the quantum levels are: $H_{Qn} = \sqrt{(2n + 1)},\; Λ_{Qn} = (2n + 1)/1,\; S_{Qn} = 1/(2n + 1)$, $Q$ denoting quantum. The $n$-levels cover {\it all} scales from the far past highest excited trans-planckian level $n = 10^{122}$ with finite curvature, $Λ_Q = 10^{122}$ and minimum entropy $S_Q = 10^{-122}$, $n$ decreases till the planck level $(n = 0)$ and enters the post-planckian phase e.g: $n = 1, 2,...,n_{inflation} = 10^{12},... ,n_{cmb} = 10^{114},...,n_{reoin} = 10^{118},...,n_{today} = 10^{122}$ with the most classical value $H_{today} = 10^{-61}$, $Λ_{today} = 10^{-122}$, $S_{today} = 10^{122}$. We implement the Snyder-Yang algebra in this context yielding a consistent group-theory realization of quantum discrete de Sitter space-time, classical-quantum gravity duality symmetry and a clarifying unifying picture.(Abridged)