论文标题

来自大量EHR系统的非结构化临床笔记的增强策展揭示了即将到来的Covid-19诊断的特定表型特征

Augmented Curation of Unstructured Clinical Notes from a Massive EHR System Reveals Specific Phenotypic Signature of Impending COVID-19 Diagnosis

论文作者

Shweta, FNU, Murugadoss, Karthik, Awasthi, Samir, Venkatakrishnan, AJ, Puranik, Arjun, Kang, Martin, Pickering, Brian W., O'Horo, John C., Bauer, Philippe R., Razonable, Raymund R., Vergidis, Paschalis, Temesgen, Zelalem, Rizza, Stacey, Mahmood, Maryam, Wilson, Walter R., Challener, Douglas, Anand, Praveen, Liebers, Matt, Doctor, Zainab, Silvert, Eli, Solomon, Hugo, Wagner, Tyler, Gores, Gregory J., Williams, Amy W., Halamka, John, Soundararajan, Venky, Badley, Andrew D.

论文摘要

了解COVID-19患者表型的时间动力学对于得出细粒的病理生理学分辨率是必要的。在这里,我们在机构范围内的机器智能平台上使用最先进的深神经网络,以增强30,494例COVID-19-19-19SPCR诊断测试的患者的1580万个临床笔记。通过对比Eletonic健康记录(EHR)衍生的CoVID-19阳性(Covidpos,n = 635)的临床表型与COVID-19-阴性(covidneg,n = 29,859)的临床表型(我们在一周的每一天)患者在PCR测试日期前的每一天,我们确定了Anosmia/dysge yysmia ansosmia/d dysia(37)。肌痛/关节痛(2.6倍),腹泻(2.2倍),发烧/寒意(2.1倍),呼吸困难(1.9倍)和咳嗽(1.8倍),同时在Covidneg患者的Covidpos中显着放大。在PCR测试前的一周中,咳嗽和腹泻的特异性组合在CovidPOS患者中具有3.2倍的扩增,以及与厌食症/dysgeusia一起,构成了Covid-19的最早EHR衍生的签名(在典型PCR测试日期之前的4-7天)。这项研究介绍了一个增强情报平台,用于实时综合EHR中捕获的机构知识。该平台具有扩大策展吞吐量的巨大潜力,对于重新培训潜在的神经网络的需求最少,因此有望在广泛的疾病中获得EHR供电的早期诊断。

Understanding the temporal dynamics of COVID-19 patient phenotypes is necessary to derive fine-grained resolution of pathophysiology. Here we use state-of-the-art deep neural networks over an institution-wide machine intelligence platform for the augmented curation of 15.8 million clinical notes from 30,494 patients subjected to COVID-19 PCR diagnostic testing. By contrasting the Electronic Health Record (EHR)-derived clinical phenotypes of COVID-19-positive (COVIDpos, n=635) versus COVID-19-negative (COVIDneg, n=29,859) patients over each day of the week preceding the PCR testing date, we identify anosmia/dysgeusia (37.4-fold), myalgia/arthralgia (2.6-fold), diarrhea (2.2-fold), fever/chills (2.1-fold), respiratory difficulty (1.9-fold), and cough (1.8-fold) as significantly amplified in COVIDpos over COVIDneg patients. The specific combination of cough and diarrhea has a 3.2-fold amplification in COVIDpos patients during the week prior to PCR testing, and along with anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19 (4-7 days prior to typical PCR testing date). This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional knowledge captured in EHRs. The platform holds tremendous potential for scaling up curation throughput, with minimal need for retraining underlying neural networks, thus promising EHR-powered early diagnosis for a broad spectrum of diseases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源