论文标题
来自大量EHR系统的非结构化临床笔记的增强策展揭示了即将到来的Covid-19诊断的特定表型特征
Augmented Curation of Unstructured Clinical Notes from a Massive EHR System Reveals Specific Phenotypic Signature of Impending COVID-19 Diagnosis
论文作者
论文摘要
了解COVID-19患者表型的时间动力学对于得出细粒的病理生理学分辨率是必要的。在这里,我们在机构范围内的机器智能平台上使用最先进的深神经网络,以增强30,494例COVID-19-19-19SPCR诊断测试的患者的1580万个临床笔记。通过对比Eletonic健康记录(EHR)衍生的CoVID-19阳性(Covidpos,n = 635)的临床表型与COVID-19-阴性(covidneg,n = 29,859)的临床表型(我们在一周的每一天)患者在PCR测试日期前的每一天,我们确定了Anosmia/dysge yysmia ansosmia/d dysia(37)。肌痛/关节痛(2.6倍),腹泻(2.2倍),发烧/寒意(2.1倍),呼吸困难(1.9倍)和咳嗽(1.8倍),同时在Covidneg患者的Covidpos中显着放大。在PCR测试前的一周中,咳嗽和腹泻的特异性组合在CovidPOS患者中具有3.2倍的扩增,以及与厌食症/dysgeusia一起,构成了Covid-19的最早EHR衍生的签名(在典型PCR测试日期之前的4-7天)。这项研究介绍了一个增强情报平台,用于实时综合EHR中捕获的机构知识。该平台具有扩大策展吞吐量的巨大潜力,对于重新培训潜在的神经网络的需求最少,因此有望在广泛的疾病中获得EHR供电的早期诊断。
Understanding the temporal dynamics of COVID-19 patient phenotypes is necessary to derive fine-grained resolution of pathophysiology. Here we use state-of-the-art deep neural networks over an institution-wide machine intelligence platform for the augmented curation of 15.8 million clinical notes from 30,494 patients subjected to COVID-19 PCR diagnostic testing. By contrasting the Electronic Health Record (EHR)-derived clinical phenotypes of COVID-19-positive (COVIDpos, n=635) versus COVID-19-negative (COVIDneg, n=29,859) patients over each day of the week preceding the PCR testing date, we identify anosmia/dysgeusia (37.4-fold), myalgia/arthralgia (2.6-fold), diarrhea (2.2-fold), fever/chills (2.1-fold), respiratory difficulty (1.9-fold), and cough (1.8-fold) as significantly amplified in COVIDpos over COVIDneg patients. The specific combination of cough and diarrhea has a 3.2-fold amplification in COVIDpos patients during the week prior to PCR testing, and along with anosmia/dysgeusia, constitutes the earliest EHR-derived signature of COVID-19 (4-7 days prior to typical PCR testing date). This study introduces an Augmented Intelligence platform for the real-time synthesis of institutional knowledge captured in EHRs. The platform holds tremendous potential for scaling up curation throughput, with minimal need for retraining underlying neural networks, thus promising EHR-powered early diagnosis for a broad spectrum of diseases.