论文标题

元音:概率尖峰赢家全部电路的经常性网络的本地在线学习规则

VOWEL: A Local Online Learning Rule for Recurrent Networks of Probabilistic Spiking Winner-Take-All Circuits

论文作者

Jang, Hyeryung, Skatchkovsky, Nicolas, Simeone, Osvaldo

论文摘要

尖峰神经元和赢家接触式尖峰电路(WTA-SNNS)的网络可以检测到时空多值事件中编码的信息。这些事件的时间(例如,点击,以及分配给每个事件的分类数值)来描述这些,例如,例如或不喜欢。其他用例包括从神经形态摄像机收集的数据中识别的对象识别,这些数据为每个像素生成在足够大的亮度变化时期签名的位。现有用于培训WTA-SNN的方案仅限于速率编码解决方案,因此仅检测空间模式。为任意WTA-SNNS开发更多的一般培训算法,继承了训练(二进制)尖峰神经网络(SNNS)的挑战。最值得注意的是,阈值函数的非差异性,尖峰神经模型的复发行为以及在神经形态硬件中实施反向传播的困难。在本文中,我们为WTA-SNN(称为元音)制定了一个在线本地培训规则,该规则仅利用本地和突触后信息以获取可见的电路,以及隐藏电路的其他常见奖励信号。该方法基于概率通用线性神经模型,控制变体和变异正则化。具有多价值事件的现实世界神经形态数据集的实验结果证明了WTA-SNN的优势,而不是传统的二进制SNN,该二进制SNN训练了使用最先进的方法,尤其是在存在有限的计算资源的情况下。

Networks of spiking neurons and Winner-Take-All spiking circuits (WTA-SNNs) can detect information encoded in spatio-temporal multi-valued events. These are described by the timing of events of interest, e.g., clicks, as well as by categorical numerical values assigned to each event, e.g., like or dislike. Other use cases include object recognition from data collected by neuromorphic cameras, which produce, for each pixel, signed bits at the times of sufficiently large brightness variations. Existing schemes for training WTA-SNNs are limited to rate-encoding solutions, and are hence able to detect only spatial patterns. Developing more general training algorithms for arbitrary WTA-SNNs inherits the challenges of training (binary) Spiking Neural Networks (SNNs). These amount, most notably, to the non-differentiability of threshold functions, to the recurrent behavior of spiking neural models, and to the difficulty of implementing backpropagation in neuromorphic hardware. In this paper, we develop a variational online local training rule for WTA-SNNs, referred to as VOWEL, that leverages only local pre- and post-synaptic information for visible circuits, and an additional common reward signal for hidden circuits. The method is based on probabilistic generalized linear neural models, control variates, and variational regularization. Experimental results on real-world neuromorphic datasets with multi-valued events demonstrate the advantages of WTA-SNNs over conventional binary SNNs trained with state-of-the-art methods, especially in the presence of limited computing resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源