论文标题

稳态溶液在具有密度依赖性扩散的捕食者 - 捕集模型中的稳定性

Stability of steady state solutions in a predator-prey model with density-dependent diffusion

论文作者

Quinones, Leoncio Rodriguez, Gordillo, Luis F.

论文摘要

在本说明中,我们介绍了与Rosenzweig-Macarthur模型的特定空间扩展相关的解决方案,用于捕食者和猎物。此处介绍的分析表明,根据从先前的数值和分析结果中获得的见解,阳性稳态溶液通过跨临界分叉机制出现。在所讨论的模型中,假定猎物通过密度依赖性扩散避免人群移动,并且还融合了避难带的存在,而避难所无法消耗猎物。猎物消耗中的饱和度也通过Holling II型功能响应包括在内。

In this note we present a study of the solutions associated to a particular spatial extension of the Rosenzweig-MacArthur model for predator and prey. The analysis presented here shows that positive steady state solutions emerge via a transcritical bifurcation mechanism, in accordance with the insight obtained from previous numerical and analytical results. In the model under discussion, prey is assumed to move avoiding crowds via a density-dependent diffusion and also incorporates the existence of a refuge zone, where predators cannot consume prey. Saturation in prey consumption is also included through a Holling type II functional response.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源