论文标题
学习连续的治疗政策和双方嵌入,以匹配异质因果效应
Learning Continuous Treatment Policy and Bipartite Embeddings for Matching with Heterogeneous Causal Effects
论文作者
论文摘要
因果推理方法广泛应用于医学,政策和经济学领域。这些应用的核心是对治疗效应做出决策的估计。当前的方法基于单个结果维度的治疗效果做出二进制的YES或不决定。这些方法无法以一定程度的强度捕获连续的太空处理策略。他们还缺乏考虑治疗复杂性的能力,例如将候选治疗与受试者相匹配。我们建议通过连续的策略处理功能以及匹配的可能性来制定治疗作为可参数化模型的有效性,并扩展到多种治疗强度和复杂性。我们将治疗效应功能分解为有效性因素的建议提出了一个框架,以使用因果推理对丰富的动作空间进行建模。我们利用深度学习来优化所需的整体度量空间,而不是预测单维治疗反事实。该方法采用了人口范围的有效性措施,并显着提高了模型的整体有效性。我们的算法的性能是。通过实验证明。当使用通用的连续空间处理和匹配体系结构时,我们观察到具有成本效益的先前ART方面的提高了41%,而平均治疗效果的类似方法则提高了68%。这些算法捕获了治疗空间中的细微变化,结构有效的优化技术,并为许多应用打开了竞技场。
Causal inference methods are widely applied in the fields of medicine, policy, and economics. Central to these applications is the estimation of treatment effects to make decisions. Current methods make binary yes-or-no decisions based on the treatment effect of a single outcome dimension. These methods are unable to capture continuous space treatment policies with a measure of intensity. They also lack the capacity to consider the complexity of treatment such as matching candidate treatments with the subject. We propose to formulate the effectiveness of treatment as a parametrizable model, expanding to a multitude of treatment intensities and complexities through the continuous policy treatment function, and the likelihood of matching. Our proposal to decompose treatment effect functions into effectiveness factors presents a framework to model a rich space of actions using causal inference. We utilize deep learning to optimize the desired holistic metric space instead of predicting single-dimensional treatment counterfactual. This approach employs a population-wide effectiveness measure and significantly improves the overall effectiveness of the model. The performance of our algorithms is. demonstrated with experiments. When using generic continuous space treatments and matching architecture, we observe a 41% improvement upon prior art with cost-effectiveness and 68% improvement upon a similar method in the average treatment effect. The algorithms capture subtle variations in treatment space, structures the efficient optimizations techniques, and opens up the arena for many applications.