论文标题

布尔阈值自动编码器的压缩力

On the Compressive Power of Boolean Threshold Autoencoders

论文作者

Melkman, Avraham A., Guo, Sini, Ching, Wai-Ki, Liu, Pengyu, Akutsu, Tatsuya

论文摘要

自动编码器是一个分层的神经网络,可以将其结构视为由编码器组成,该编码器将尺寸$ d $的输入向量压缩到低尺寸$ d $的向量和解码器,并且将低维矢量转换为原始输入矢量(或一个非常相似)。在本文中,我们通过研究所需的节点和图层的数量来探讨是布尔阈值网络的压缩功率,这些节点和图层的数量确保确保确保在给定的独特输入二进制矢量中每个向量的节点和图层的数量转换回其原始的。我们表明,对于任何一组$ n $不同的向量,都有一个具有最小的中间层的七层自动编码器(即其尺寸为$ n $),但是没有一组$ n $ n $ vectors,其中没有一个具有相同大小的中间层的三层自动编码器。此外,我们提出了一种权衡:如果允许使用相当大的中层层,则确实存在五层自动编码器。我们还自己研究编码。我们获得的结果表明,是构成自动编码瓶颈的解码。例如,总有一个三层布尔阈值编码器,它将$ n $向量压缩到一个尺寸中,该尺寸降低到$ n $的对数的两倍。

An autoencoder is a layered neural network whose structure can be viewed as consisting of an encoder, which compresses an input vector of dimension $D$ to a vector of low dimension $d$, and a decoder which transforms the low-dimensional vector back to the original input vector (or one that is very similar). In this paper we explore the compressive power of autoencoders that are Boolean threshold networks by studying the numbers of nodes and layers that are required to ensure that the numbers of nodes and layers that are required to ensure that each vector in a given set of distinct input binary vectors is transformed back to its original. We show that for any set of $n$ distinct vectors there exists a seven-layer autoencoder with the smallest possible middle layer, (i.e., its size is logarithmic in $n$), but that there is a set of $n$ vectors for which there is no three-layer autoencoder with a middle layer of the same size. In addition we present a kind of trade-off: if a considerably larger middle layer is permissible then a five-layer autoencoder does exist. We also study encoding by itself. The results we obtain suggest that it is the decoding that constitutes the bottleneck of autoencoding. For example, there always is a three-layer Boolean threshold encoder that compresses $n$ vectors into a dimension that is reduced to twice the logarithm of $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源