论文标题

网络井:使用选定功能的有效网络钓鱼检测

PhishOut: Effective Phishing Detection Using Selected Features

论文作者

Paliath, Suhail, Qbeitah, Mohammad Abu, Aldwairi, Monther

论文摘要

网络钓鱼电子邮件是当今许多攻击的第一步。它们具有简单的超链接,请求采取行动或现有服务或网站的完整复制品。通常的目标是欺骗用户自愿赠送他的敏感信息,例如登录凭证。已经提出并开发了许多方法和应用程序,以捕获和过滤网络钓鱼电子邮件。但是,这个问题仍然缺乏完整而全面的解决方案。在本文中,我们将知识发现原则应用于数据清理,集成,选择,聚合,数据挖掘的知识提取。我们根据信息增益来研究功能有效性,并为文献贡献两个新功能。我们比较了六种机器学习方法,以根据少数精心选择的功能来检测网络钓鱼。我们计算误报,假否定性,平均绝对误差,召回,精度和F量,并达到非常低的误报和负率。 Na {\“ı} Ve贝叶斯的真实积极速度最小,整体神经网络是准确准确性99.4 \%的准确网络钓鱼检测的最大希望。

Phishing emails are the first step for many of today's attacks. They come with a simple hyperlink, request for action or a full replica of an existing service or website. The goal is generally to trick the user to voluntarily give away his sensitive information such as login credentials. Many approaches and applications have been proposed and developed to catch and filter phishing emails. However, the problem still lacks a complete and comprehensive solution. In this paper, we apply knowledge discovery principles from data cleansing, integration, selection, aggregation, data mining to knowledge extraction. We study the feature effectiveness based on Information Gain and contribute two new features to the literature. We compare six machine-learning approaches to detect phishing based on a small number of carefully chosen features. We calculate false positives, false negatives, mean absolute error, recall, precision and F-measure and achieve very low false positive and negative rates. Na{\"ı}ve Bayes has the least true positives rate and overall Neural Networks holds the most promise for accurate phishing detection with accuracy of 99.4\%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源