论文标题

加强元学习,以拦截具有寄生态度循环的驱动exoatmospheric靶标

Reinforcement Meta-Learning for Interception of Maneuvering Exoatmospheric Targets with Parasitic Attitude Loop

论文作者

Gaudet, Brian, Furfaro, Roberto, Linares, Richard, Scorsoglio, Andrea

论文摘要

我们使用加固元学习来优化适合于exotospheric拦截机动目标的自适应综合引导,导航和控制系统。系统地图观察结果由互距离求职者角度和速度测量值直接用于推进器on-On-Ow-Ow-Ow-Own命令。使用高保真度六个自由度模拟器,我们证明了优化的策略可以适应寄生效应,包括寻求者角度测量滞后,推进器控制滞后,寄生态度循环,由尺度因子误差和高斯噪声和旋转速度测量值和旋转速度测量值以及由燃料消耗引起的时间变化的质量。重要的是,优化的政策在各种挑战性的目标操作中都可以良好的表现。与以前通过诱导视线振荡来增强范围可观察性的工作不同,我们的系统被优化,仅使用寻求者和速率的测量值。通过大量的蒙特卡洛模拟,对随机截距截距方案进行了大量模拟,我们证明了优化的政策使绩效接近增强比例导航的绩效,并充分了解了完全参与状态。优化的系统在计算上是有效的,需要最少的内存,并且应与当今的飞行处理器兼容。

We use Reinforcement Meta-Learning to optimize an adaptive integrated guidance, navigation, and control system suitable for exoatmospheric interception of a maneuvering target. The system maps observations consisting of strapdown seeker angles and rate gyro measurements directly to thruster on-off commands. Using a high fidelity six degree-of-freedom simulator, we demonstrate that the optimized policy can adapt to parasitic effects including seeker angle measurement lag, thruster control lag, the parasitic attitude loop resulting from scale factor errors and Gaussian noise on angle and rotational velocity measurements, and a time varying center of mass caused by fuel consumption and slosh. Importantly, the optimized policy gives good performance over a wide range of challenging target maneuvers. Unlike previous work that enhances range observability by inducing line of sight oscillations, our system is optimized to use only measurements available from the seeker and rate gyros. Through extensive Monte Carlo simulation of randomized exoatmospheric interception scenarios, we demonstrate that the optimized policy gives performance close to that of augmented proportional navigation with perfect knowledge of the full engagement state. The optimized system is computationally efficient and requires minimal memory, and should be compatible with today's flight processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源