论文标题

电动踏板车系统的随机模型

A Stochastic Model for Electric Scooter Systems

论文作者

Pender, Jamol, Tao, Shuang, Wikum, Anders

论文摘要

电动踏板车在世界范围内变得极为流行,作为在许多城市周围运输的一种手段。由于这些电子示波器依靠电池,因此重要的是要了解其中有多少个电子弹车机具有足够的电池寿命来运输骑手,以及这些电子弹药机可能需要更换电池。为此,我们开发了第一个随机模型,以捕获大型踏板车网络的E型驾驶室的电池寿命动力学。在我们的模型中,我们假设电子示波器电池可移动,并由称为交换机的代理代替。因此,为了获得有关系统的大规模动力学的洞察力,我们证明了平均场限制定理和功能性中心限制定理,用于特定电池寿命间隔的E型电动器的分数。利用平均场限制和功能性中心限制定理,我们开发了一种算法,用于确定保证系统概率性能水平所需的交换者数量。最后,我们通过随机模拟和真实数据显示我们的随机模型捕获了相关的动力学。

Electric scooters are becoming immensely popular across the world as a means of reliable transportation around many cities. As these e-scooters rely on batteries, it is important to understand how many of these e-scooters have enough battery life to transport riders and when these e-scooters might require a battery replacement. To this end, we develop the first stochastic model to capture the battery life dynamics of e-scooters of a large scooter network. In our model, we assume that e-scooter batteries are removable and replaced by agents called swappers. Thus, to gain some insight about the large scale dynamics of the system, we prove a mean field limit theorem and a functional central limit theorem for the fraction of e-scooters that lie in a particular interval of battery life. Exploiting the mean field limit and the functional central limit theorems, we develop an algorithm for determining the number of swappers that are needed to guarantee levels of probabilistic performance of the system. Finally, we show through a stochastic simulation and real data that our stochastic model captures the relevant dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源