论文标题

使用高维计算的分类:评论

Classification using Hyperdimensional Computing: A Review

论文作者

Ge, Lulu, Parhi, Keshab K.

论文摘要

高维(HD)计算基于其独特的数据类型,称为高量向量。这些过量向量的尺寸通常在数万个范围内。 HD计算旨在解决认知任务,旨在计算其数据之间的相似性。数据转换是通过三个操作实现的,包括加法,乘法和置换。它的超宽数据表示引入了针对噪声的冗余。由于信息均匀分布在每个高量向量上,因此HD计算本质上是强大的。此外,由于这三个操作的性质,高清计算会导致快速学习能力,高能源效率和学习和分类任务的可接受准确性。本文介绍了高清计算的背景,并回顾了数据表示,数据转换和相似性测量。高维度的正交性为灵活计算提供了机会。为了平衡准确性和效率之间的权衡,策略包括但不限于编码,再培训,二进制和硬件加速。评估表明,高清计算在使用字母,信号和图像形式的数据解决问题方面显示出很大的潜力。高清计算特别表现出巨大的希望,可以替换机器学习算法作为物联网(IoT)领域中的轻量级分类器。

Hyperdimensional (HD) computing is built upon its unique data type referred to as hypervectors. The dimension of these hypervectors is typically in the range of tens of thousands. Proposed to solve cognitive tasks, HD computing aims at calculating similarity among its data. Data transformation is realized by three operations, including addition, multiplication and permutation. Its ultra-wide data representation introduces redundancy against noise. Since information is evenly distributed over every bit of the hypervectors, HD computing is inherently robust. Additionally, due to the nature of those three operations, HD computing leads to fast learning ability, high energy efficiency and acceptable accuracy in learning and classification tasks. This paper introduces the background of HD computing, and reviews the data representation, data transformation, and similarity measurement. The orthogonality in high dimensions presents opportunities for flexible computing. To balance the tradeoff between accuracy and efficiency, strategies include but are not limited to encoding, retraining, binarization and hardware acceleration. Evaluations indicate that HD computing shows great potential in addressing problems using data in the form of letters, signals and images. HD computing especially shows significant promise to replace machine learning algorithms as a light-weight classifier in the field of internet of things (IoTs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源