论文标题
在运输网络上的旅行时间的预测性推断
Predictive inference for travel time on transportation networks
论文作者
论文摘要
大规模GPS数据上安装的最新统计方法可以准确估计两点之间的预期行程。但是,对于旅行时间的分布知之甚少,这是在许多物流问题上决策的关键。有了足够的数据,单个路段旅行时间就可以很好地近似。挑战在于理解如何在一条路线上汇总此类信息,以达到旅行时间的路线分布。我们针对这个问题开发了一种新颖的统计方法。我们表明,在一般条件下,在不假设速度分布的情况下,旅行时间{按路线距离除以距离途径的高斯分布,并具有不变的人口平均值和差异。我们为此类参数开发有效的推理方法,并提出了旅行时间渐近的人口预测间隔。使用交通流量信息,我们进一步开发了基于旅行的高斯预测分布,从而导致短途和长途旅行的紧密预测间隔。我们的方法是在R-A-A-Akage中实施的,在使用移动GPS数据的现实案例研究中说明了我们的方法,这表明我们的特定旅行特定和人口间隔都达到了95 \%的理论覆盖水平。与替代方法相比,我们的特异性预测分布(a)在各个重要级别的理论覆盖范围内,(b)更紧密的预测间隔,(c)较少的预测性偏见以及(d)(d)更有效的估计和预测程序。这使我们的方法有望成为低延迟,大规模运输应用。
Recent statistical methods fitted on large-scale GPS data can provide accurate estimations of the expected travel time between two points. However, little is known about the distribution of travel time, which is key to decision-making across a number of logistic problems. With sufficient data, single road-segment travel time can be well approximated. The challenge lies in understanding how to aggregate such information over a route to arrive at the route-distribution of travel time. We develop a novel statistical approach to this problem. We show that, under general conditions, without assuming a distribution of speed, travel time {divided by route distance follows a Gaussian distribution with route-invariant population mean and variance. We develop efficient inference methods for such parameters and propose asymptotically tight population prediction intervals for travel time. Using traffic flow information, we further develop a trip-specific Gaussian-based predictive distribution, resulting in tight prediction intervals for short and long trips. Our methods, implemented in an R-package, are illustrated in a real-world case study using mobile GPS data, showing that our trip-specific and population intervals both achieve the 95\% theoretical coverage levels. Compared to alternative approaches, our trip-specific predictive distribution achieves (a) the theoretical coverage at every level of significance, (b) tighter prediction intervals, (c) less predictive bias, and (d) more efficient estimation and prediction procedures. This makes our approach promising for low-latency, large-scale transportation applications.