论文标题
乳腺图中检测乳腺癌的两个阶段多实例学习框架
A Two-Stage Multiple Instance Learning Framework for the Detection of Breast Cancer in Mammograms
论文作者
论文摘要
乳房X线照片通常用于乳腺癌的大规模筛查中,这主要以恶性肿瘤的存在为特征。然而,鉴于质量区域的尺寸很小,并且难以区分恶性,良性肿块和健康密集的纤维纤维glandular组织,因此自动化图像水平的检测是一项具有挑战性的任务。为了解决这些问题,我们探索了两个阶段的多个实例学习(MIL)框架。在第一阶段对卷积神经网络(CNN)进行了训练,以在乳房X线照片中提取局部候选斑块,这些斑点可能包含良性或恶性质量。第二阶段采用MIL策略来进行图像水平良性与恶性分类。全局图像级特征被计算为使用CNN学习的补丁级特征的加权平均值。我们的方法在质量的定位任务上表现良好,平均精度/召回率为0.76/0.80,并使用InBreast DataSet上的五倍的交叉验证在Imagelevel分类任务上获得了平均AUC为0.91。与从整个乳房X线照片中密集提取斑块相比,仅限于第1阶段提取的候选斑块的MIL仅导致分类性能的显着改善。
Mammograms are commonly employed in the large scale screening of breast cancer which is primarily characterized by the presence of malignant masses. However, automated image-level detection of malignancy is a challenging task given the small size of the mass regions and difficulty in discriminating between malignant, benign mass and healthy dense fibro-glandular tissue. To address these issues, we explore a two-stage Multiple Instance Learning (MIL) framework. A Convolutional Neural Network (CNN) is trained in the first stage to extract local candidate patches in the mammograms that may contain either a benign or malignant mass. The second stage employs a MIL strategy for an image level benign vs. malignant classification. A global image-level feature is computed as a weighted average of patch-level features learned using a CNN. Our method performed well on the task of localization of masses with an average Precision/Recall of 0.76/0.80 and acheived an average AUC of 0.91 on the imagelevel classification task using a five-fold cross-validation on the INbreast dataset. Restricting the MIL only to the candidate patches extracted in Stage 1 led to a significant improvement in classification performance in comparison to a dense extraction of patches from the entire mammogram.