论文标题
实验和对铁和地球的传输特性理论的对帐
Reconciliation of experiments and theory on transport properties of iron and the geodynamo
论文作者
论文摘要
从核心限制了该区域的动力学和热演化的热传输量取决于铁的传输特性。 Ohta等人(2016年)和Konopkova等人(2016年)在相关地球的核心压力温度(P-T)条件下,在激光加热的钻石砧细胞(DACS)中分别测量了铁的电阻率和热电导率,并获得了极大矛盾的结果。在这里,我们使用四个探针范德布鲁(Van der Pauw)方法与DAC中的均匀扁平激光加热相结合的HCP铁的电阻率高达〜170 GPa和〜3,000 K。我们还通过包括电子 - 光子和电子电子散射在内的第一原理方法来计算其电导率和热导率。我们发现,测得的HCP铁的电阻率几乎随温度的升高而线性增加,并且与当前的第一原理计算一致。 The proportionality coefficient between resistivity and thermal conductivity (the Lorenz number) in hcp-iron differs from the ideal value (2.44*10^-8 W Omega K^-2), so a non-ideal Lorenz number of ~(2.0-2.1)*10^-8 W Omega K^-2 is used to convert the experimental resistivity to the thermal conductivity of hcp-Fe at high P-T.结果在附近的条件下,HCP铁的电阻率和热导率分别限制为〜80(5)U omega CM和〜100(10)w/mk。我们的结果表明,〜10(1)TW的绝热热流穿过核心透射边界,用于液体FE合金外核,支持当今的Geodynamo,这是由热对流通过核心的世俗冷却驱动的,并通过内芯固体期间通过潜在热和重力的组成对流驱动。
The amount of heat transport from the core, which constrains the dynamics and thermal evolution of the region, depends on the transport properties of iron. Ohta et al.(2016) and Konopkova et al.(2016) measured electrical resistivity and thermal conductivity of iron, respectively, in laser-heated diamond anvil cells (DACs) at relevant Earth's core pressure-temperature (P-T) conditions, and obtained dramatically contradictory results. Here we measure the electrical resistivity of hcp-iron up to ~170 GPa and ~3,000 K using a four-probe van der Pauw method coupled with homogeneous flat-top laser-heating in a DAC. We also compute its electrical and thermal conductivity by first-principles methods including electron-phonon and electron-electron scattering. We find that the measured resistivity of hcp-iron increases almost linearly with increasing temperature, and is consistent with current first-principles computations. The proportionality coefficient between resistivity and thermal conductivity (the Lorenz number) in hcp-iron differs from the ideal value (2.44*10^-8 W Omega K^-2), so a non-ideal Lorenz number of ~(2.0-2.1)*10^-8 W Omega K^-2 is used to convert the experimental resistivity to the thermal conductivity of hcp-Fe at high P-T. The results constrain the resistivity and thermal conductivity of hcp-iron to ~80(5) u Omega cm and ~100(10) W/mK, respectively, at conditions near core-mantle boundary. Our results indicate an adiabatic heat flow of ~10(1) TW through the core-mantle boundary for a liquid Fe alloy outer core, supporting a present-day geodynamo driven by thermal convection through the core's secular cooling and by compositional convection through the latent heat and gravitational energy during the inner core's solidification.