论文标题

有效的:可扩展的单人姿势估计

EfficientPose: Scalable single-person pose estimation

论文作者

Groos, Daniel, Ramampiaro, Heri, Ihlen, Espen A. F.

论文摘要

单人的人类姿势估计有助于体育和临床应用中的无标记运动分析。尽管如此,针对人类姿势估计的最新模型通常不符合现实生活应用的要求。深度学习技术的扩散导致了许多先进方法的发展。但是,随着该领域的进展,还引入了更复杂和效率低下的模型,这导致了计算需求的巨大增加。为了应对这些复杂性和效率低下的挑战,我们提出了一种新型的卷积神经网络架构,称为效应,该结构利用了最近提出的有效网络,以提供有效且可扩展的单人姿势估计。有效的是使用移动倒入瓶颈卷积的有效多尺度提取器和计算有效检测块的模型家族,同时确保姿势配置的精度仍得到提高。由于其复杂性和效率低,有效孔通过限制内存足迹和计算成本来实现边缘设备上的现实应用程序。我们实验的结果使用具有挑战性的MPII单人物基准,表明,在准确性和计算效率方面,提出的有效模型大大优于广泛使用的OpenPose模型。特别是,我们的表现最佳模型具有单人MPII的最新精度,具有低复杂性交流。

Single-person human pose estimation facilitates markerless movement analysis in sports, as well as in clinical applications. Still, state-of-the-art models for human pose estimation generally do not meet the requirements of real-life applications. The proliferation of deep learning techniques has resulted in the development of many advanced approaches. However, with the progresses in the field, more complex and inefficient models have also been introduced, which have caused tremendous increases in computational demands. To cope with these complexity and inefficiency challenges, we propose a novel convolutional neural network architecture, called EfficientPose, which exploits recently proposed EfficientNets in order to deliver efficient and scalable single-person pose estimation. EfficientPose is a family of models harnessing an effective multi-scale feature extractor and computationally efficient detection blocks using mobile inverted bottleneck convolutions, while at the same time ensuring that the precision of the pose configurations is still improved. Due to its low complexity and efficiency, EfficientPose enables real-world applications on edge devices by limiting the memory footprint and computational cost. The results from our experiments, using the challenging MPII single-person benchmark, show that the proposed EfficientPose models substantially outperform the widely-used OpenPose model both in terms of accuracy and computational efficiency. In particular, our top-performing model achieves state-of-the-art accuracy on single-person MPII, with low-complexity ConvNets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源