论文标题

机器编号感:抽象和关系推理的视觉算术问题数据集

Machine Number Sense: A Dataset of Visual Arithmetic Problems for Abstract and Relational Reasoning

论文作者

Zhang, Wenhe, Zhang, Chi, Zhu, Yixin, Zhu, Song-Chun

论文摘要

作为数学思维和智力的综合指标,数字意义(Dehaene 2011)桥接了象征概念的诱导和解决问题的能力。为了赋予这种至关重要的认知能力来机械智能,我们提出了一个数据集,机器编号sense(MNS),该数据集由使用语法模型和OR Graph(AOG)自动生成的视觉算术问题组成。这些视觉算术问题以几何形式的形式:每个问题都有一组几何形状作为其上下文和嵌入式数字符号。解决此类问题并不是很微不足道的。该机器不仅必须识别数字,而且还必须及其上下文,形状和关系(例如对称性)以及适当的操作来解释数字。我们在此视觉推理任务中使用四个主要的神经网络模型作为基础来对MNS数据集进行基准测试。全面的实验表明,当前基于神经网络的模型仍在难以了解数字概念和关系操作。我们表明,一个简单的蛮力搜索算法可以解决一些问题,而无需上下文信息。至关重要的是,通过额外的感知模块考虑几何环境将提供急剧的性能增长,而搜索步骤较少。总的来说,我们呼吁将基于经典的基于搜索的算法与现代神经网络融合在一起,以发现未来研究中的基本数字概念。

As a comprehensive indicator of mathematical thinking and intelligence, the number sense (Dehaene 2011) bridges the induction of symbolic concepts and the competence of problem-solving. To endow such a crucial cognitive ability to machine intelligence, we propose a dataset, Machine Number Sense (MNS), consisting of visual arithmetic problems automatically generated using a grammar model--And-Or Graph (AOG). These visual arithmetic problems are in the form of geometric figures: each problem has a set of geometric shapes as its context and embedded number symbols. Solving such problems is not trivial; the machine not only has to recognize the number, but also to interpret the number with its contexts, shapes, and relations (e.g., symmetry) together with proper operations. We benchmark the MNS dataset using four predominant neural network models as baselines in this visual reasoning task. Comprehensive experiments show that current neural-network-based models still struggle to understand number concepts and relational operations. We show that a simple brute-force search algorithm could work out some of the problems without context information. Crucially, taking geometric context into account by an additional perception module would provide a sharp performance gain with fewer search steps. Altogether, we call for attention in fusing the classic search-based algorithms with modern neural networks to discover the essential number concepts in future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源