论文标题

长期有定向的渗透中的双态性和时间晶体

Bistability and time crystals in long-ranged directed percolation

论文作者

Pizzi, Andrea, Nunnenkamp, Andreas, Knolle, Johannes

论文摘要

随机过程控制了整个科学中各种各样的现实系统的时间演变。概率的蜂窝自动机给出了马尔可夫图片中嘈杂的多粒子系统和空间维度概念的最小描述,该概率蜂窝自动机给出了,通常具有时间独立且短距离的更新规则。在这里,我们提出了一个具有幂律相互作用的简单蜂窝自动机,该自动机带来了长时间的定向渗透的可行阶段,其长期行为不仅取决于系统动力学,而且还取决于初始条件。在对更新规则进行定期调制的情况下,我们发现该系统的响应时间大于对指数(系统大小)长时间的调制的周期。基础动力学的离散时间翻译对称性的破坏是通过长期相互作用的自我校正机制来实现的,该机制补偿了噪声引起的缺陷。因此,我们的工作为物质的经典离散时间晶体相提供了一个坚定的例子,并为研究新的非平衡阶段的研究铺平了道路。

Stochastic processes govern the time evolution of a huge variety of realistic systems throughout the sciences. A minimal description of noisy many-particle systems within a Markovian picture and with a notion of spatial dimension is given by probabilistic cellular automata, which typically feature time-independent and short-ranged update rules. Here, we propose a simple cellular automaton with power-law interactions that gives rise to a bistable phase of long-ranged directed percolation whose long-time behaviour is not only dictated by the system dynamics, but also by the initial conditions. In the presence of a periodic modulation of the update rules, we find that the system responds with a period larger than that of the modulation for an exponentially (in system size) long time. This breaking of discrete time translation symmetry of the underlying dynamics is enabled by a self-correcting mechanism of the long-ranged interactions which compensates noise-induced imperfections. Our work thus provides a firm example of a classical discrete time crystal phase of matter and paves the way for the study of novel non-equilibrium phases in the unexplored field of `Floquet probabilistic cellular automata'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源