论文标题
旋转和二进制恒星演化模型的比较:对大量恒星种群的影响
A Comparison of Rotating and Binary Stellar Evolution Models: Effects on Massive Star Populations
论文作者
论文摘要
旋转和与二进制伴侣的相互作用都可以显着影响巨大的恒星进化,改变内部和表面丰度,质量损失率和机制,观察到的温度和亮度以及它们的最终核心 - 崩溃命运。日内瓦和BPASS恒星进化代码分别包括旋转和二元进化效应的详细处理,并可以说明这些现象对大型恒星和恒星种群的影响。但是,如果我们希望将它们的预测用于解释观察结果,那么对这两个广泛使用的代码进行了直接比较至关重要。特别是,旋转和二进制模型将预测不同的年轻恒星种群,从而影响恒星种群合成(SPS)的产量,并基于常用的工具(例如星数比率)对大型大型星样品的产生解释。在这里,我们使用以前的工作中引入的插值SPS方案和新型的贝叶斯框架进行比较,并介绍了由单个,旋转和二进制非旋转进化模型产生的大量恒星种群的新型贝叶斯框架。我们计算了两个模型的恒星计数比值的预测值,并将结果与Westerlund 1,$ H +χ$ Persei和Magellanic Clouds中的大量恒星进行了比较。我们还考虑了观测值和模型的局限性,以及如何定量地包括SPS模型中的观察性完整性限制。我们证明,当此处介绍的方法与稳健的恒星进化模型相结合时,提供了一种潜在的方法来估算大型恒星种群中巨大恒星的物理特性。
Both rotation and interactions with binary companions can significantly affect massive star evolution, altering interior and surface abundances, mass loss rates and mechanisms, observed temperatures and luminosities, and their ultimate core-collapse fates. The Geneva and BPASS stellar evolution codes include detailed treatments of rotation and binary evolutionary effects, respectively, and can illustrate the impact of these phenomena on massive stars and stellar populations. However, a direct comparison of these two widely-used codes is vital if we hope to use their predictions for interpreting observations. In particular, rotating and binary models will predict different young stellar populations, impacting the outputs of stellar population synthesis (SPS) and the resulting interpretation of large massive star samples based on commonly-used tools such as star count ratios. Here we compare the Geneva and BPASS evolutionary models, using an interpolated SPS scheme introduced in our previous work and a novel Bayesian framework to present the first in-depth direct comparison of massive stellar populations produced from single, rotating, and binary non-rotating evolution models. We calculate both models' predicted values of star count ratios and compare the results to observations of massive stars in Westerlund 1, $h + χ$ Persei, and both Magellanic Clouds. We also consider the limitations of both the observations and the models, and how to quantitatively include observational completeness limits in SPS models. We demonstrate that the methods presented here, when combined with robust stellar evolutionary models, offer a potential means of estimating the physical properties of massive stars in large stellar populations.