论文标题
强大的生成对抗网络
Robust Generative Adversarial Network
论文作者
论文摘要
生成的对抗网络(GAN)是强大的生成模型,但通常会遭受不稳定性和泛化问题,可能导致几代人。大多数现有的作品着重于稳定鉴别器的训练,同时忽略概括属性。在这项工作中,我们旨在通过促进训练样本的小社区内的局部鲁棒性来提高gan的概括能力。我们还证明,在训练组的小社区中的鲁棒性可以导致更好的概括。特别是,我们设计了一个强大的优化框架,其中生成器和鉴别器在一个小的Wasserstein Ball中以\ textit {worst-case}设置相互竞争。发电机试图映射\ textIt {最差的输入分布}(而不是大多数gan中使用的高斯分布),而歧视器则试图区分真实和假的分布\ textit {具有最差的扰动}。我们已经证明,在轻度假设下,与传统的gan相比,我们的强大方法可以获得更严格的概括,从而确保了RGAN的理论优势而不是gan。关于CIFAR-10,STL-10和Celeba数据集的一系列实验表明,我们提出的强大框架可以大大,一致地对五个基线GAN模型进行改进。
Generative adversarial networks (GANs) are powerful generative models, but usually suffer from instability and generalization problem which may lead to poor generations. Most existing works focus on stabilizing the training of the discriminator while ignoring the generalization properties. In this work, we aim to improve the generalization capability of GANs by promoting the local robustness within the small neighborhood of the training samples. We also prove that the robustness in small neighborhood of training sets can lead to better generalization. Particularly, we design a robust optimization framework where the generator and discriminator compete with each other in a \textit{worst-case} setting within a small Wasserstein ball. The generator tries to map \textit{the worst input distribution} (rather than a Gaussian distribution used in most GANs) to the real data distribution, while the discriminator attempts to distinguish the real and fake distribution \textit{with the worst perturbation}. We have proved that our robust method can obtain a tighter generalization upper bound than traditional GANs under mild assumptions, ensuring a theoretical superiority of RGAN over GANs. A series of experiments on CIFAR-10, STL-10 and CelebA datasets indicate that our proposed robust framework can improve on five baseline GAN models substantially and consistently.