论文标题
非自动一致的kohn-sham方程的后验误差估计
A posteriori error estimation for the non-self-consistent Kohn-Sham equations
论文作者
论文摘要
由于(i)基集的有限性,(ii)迭代过程中的收敛阈值,(iii)浮点算术中圆形误差的传播。在此贡献中,我们在伪波基集中的伪势近似中计算完全保证的界限。我们通过提供带有误差栏注释的硅的带结构图来证明我们的方法论,表明误差合并误差。
We address the problem of bounding rigorously the errors in the numerical solution of the Kohn-Sham equations due to (i) the finiteness of the basis set, (ii) the convergence thresholds in iterative procedures, (iii) the propagation of rounding errors in floating-point arithmetic. In this contribution, we compute fully-guaranteed bounds on the solution of the non-self-consistent equations in the pseudopotential approximation in a plane-wave basis set. We demonstrate our methodology by providing band structure diagrams of silicon annotated with error bars indicating the combined error.