论文标题
数据增强不平衡属性分类
Data Augmentation Imbalance For Imbalanced Attribute Classification
论文作者
论文摘要
行人属性识别是一个重要的多标签分类问题。尽管卷积神经网络在从图像中学习判别特征方面很突出,但多标签设置中用于细粒度任务的数据不平衡仍然是一个开放的问题。在本文中,我们提出了一种新的重采样算法,称为:数据增强不平衡(DAI),以明确增强通过增加占一小部分标签的标签比例来区分较少属性的能力。从根本上讲,通过同时在多标签数据集上应用过度采样和不足采样,抢劫丰富属性并帮助穷人的想法对DAI做出了重大贡献。广泛的经验证据表明,我们的DAI算法基于行人属性数据集,即标准PA-100K和PETA数据集取得了最先进的结果。
Pedestrian attribute recognition is an important multi-label classification problem. Although the convolutional neural networks are prominent in learning discriminative features from images, the data imbalance in multi-label setting for fine-grained tasks remains an open problem. In this paper, we propose a new re-sampling algorithm called: data augmentation imbalance (DAI) to explicitly enhance the ability to discriminate the fewer attributes via increasing the proportion of labels accounting for a small part. Fundamentally, by applying over-sampling and under-sampling on the multi-label dataset at the same time, the thought of robbing the rich attributes and helping the poor makes a significant contribution to DAI. Extensive empirical evidence shows that our DAI algorithm achieves state-of-the-art results, based on pedestrian attribute datasets, i.e. standard PA-100K and PETA datasets.