论文标题
LogicalFactchecker:利用图形模块网络进行事实检查的逻辑操作
LogicalFactChecker: Leveraging Logical Operations for Fact Checking with Graph Module Network
论文作者
论文摘要
验证文本语句的正确性不仅需要有关单词含义的语义推理,而且还需要有关逻辑操作(例如计数,高级,聚合等)的象征性推理。在这项工作中,我们提出了逻辑factachecker,逻辑factChecker,一种神经网络方法,能够利用逻辑操作进行逻辑操作进行事实检查。它在TabFact上实现了最先进的性能,TabFact是一个大规模的基准数据集,旨在验证使用半结构表的文本语句。这是通过基于变压器体系结构建立的图形模块网络实现的。借助文本语句和表作为输入,LogicalFactChecker以语义解析方式自动衍生该语句的程序(又称逻辑形式)。然后,构建了异质图,不仅捕获表和程序的结构,还捕获具有不同模态的输入之间的连接。这样的图形揭示了语句,表格和程序中每个单词的相关上下文。该图用于在基于变压器的体系结构中获得单词的图形增强上下文表示。之后,进一步引入了一个程序驱动的模块网络以利用程序的层次结构,其中语义组成性通过一组特定于功能的模块沿程序结构进行动态建模。消融实验表明,异质图和模块网络对于获得强有力的结果都很重要。
Verifying the correctness of a textual statement requires not only semantic reasoning about the meaning of words, but also symbolic reasoning about logical operations like count, superlative, aggregation, etc. In this work, we propose LogicalFactChecker, a neural network approach capable of leveraging logical operations for fact checking. It achieves the state-of-the-art performance on TABFACT, a large-scale, benchmark dataset built for verifying a textual statement with semi-structured tables. This is achieved by a graph module network built upon the Transformer-based architecture. With a textual statement and a table as the input, LogicalFactChecker automatically derives a program (a.k.a. logical form) of the statement in a semantic parsing manner. A heterogeneous graph is then constructed to capture not only the structures of the table and the program, but also the connections between inputs with different modalities. Such a graph reveals the related contexts of each word in the statement, the table and the program. The graph is used to obtain graph-enhanced contextual representations of words in Transformer-based architecture. After that, a program-driven module network is further introduced to exploit the hierarchical structure of the program, where semantic compositionality is dynamically modeled along the program structure with a set of function-specific modules. Ablation experiments suggest that both the heterogeneous graph and the module network are important to obtain strong results.