论文标题

自然语言对ICD10医学实体的神经翻译和自动识别

Neural translation and automated recognition of ICD10 medical entities from natural language

论文作者

Falissard, Louis, Morgand, Claire, Roussel, Sylvie, Imbaud, Claire, Ghosn, Walid, Bounebache, Karim, Rey, Grégoire

论文摘要

自然语言对医学实体的认可是医学领域的一个无处不在的问题,从医学法编码到对公共卫生的电子健康数据的分析,其应用程序不等。但是,这是一项复杂的任务,通常需要人类的专家干预,从而使其繁华且耗时。人工智能的最新进展,特别是深度学习方法的提升,使计算机能够在许多复杂问题上做出有效的决策,其明显的神经序列模型及其在自然语言处理中的强大应用。但是,他们需要大量的数据来学习,这通常是它们的主要限制因素。但是,CépIDC在法国国家规模上存储了详尽的死亡证书数据库数据库,构成了数百万个自然语言示例,其相关的人类编码医疗实体可供机器学习从业者使用。本文研究了深度神经序列模型在自然语言问题中识别医学实体识别的应用。

The recognition of medical entities from natural language is an ubiquitous problem in the medical field, with applications ranging from medical act coding to the analysis of electronic health data for public health. It is however a complex task usually requiring human expert intervention, thus making it expansive and time consuming. The recent advances in artificial intelligence, specifically the raise of deep learning methods, has enabled computers to make efficient decisions on a number of complex problems, with the notable example of neural sequence models and their powerful applications in natural language processing. They however require a considerable amount of data to learn from, which is typically their main limiting factor. However, the CépiDc stores an exhaustive database of death certificates at the French national scale, amounting to several millions of natural language examples provided with their associated human coded medical entities available to the machine learning practitioner. This article investigates the applications of deep neural sequence models to the medical entity recognition from natural language problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源