论文标题

基于小数据集的有效人类活动识别

Effective Human Activity Recognition Based on Small Datasets

论文作者

Yu, Bruce X. B., Liu, Yan, Chan, Keith C. C.

论文摘要

关于基于视觉的人类活动识别(HAR)的最新工作着重于为任务设计复杂的深度学习模型。这样一来,需要收集大型数据集。由于获取和处理大型培训数据集通常非常昂贵,因此必须解决如何减小数据集大小的问题而不影响识别精度的问题。为此,我们提出了一种由三个步骤组成的HAR方法:(i)基于原始数据转换基于新功能的生成新功能的数据转换,(ii)涉及基于ADABOOST算法学习分类器的特征提取,以及使用训练数据的使用以及在转换功能和图案识别特征的使用中的使用以及(iii)参数识别特征(III)参数识别的培训数据的使用,以及(iii)参数识别。参数作为用于识别人类活动的深度学习算法的培训数据。与现有方法相比,这种提出的方​​法具有简单且坚固的有利特征。该方法已通过在相对较小的实际数据集上进行的许多实验进行了测试。实验结果表明,使用所提出的方法,即使在较小的训练数据规模的情况下,人类活动也可以更准确地识别。

Most recent work on vision-based human activity recognition (HAR) focuses on designing complex deep learning models for the task. In so doing, there is a requirement for large datasets to be collected. As acquiring and processing large training datasets are usually very expensive, the problem of how dataset size can be reduced without affecting recognition accuracy has to be tackled. To do so, we propose a HAR method that consists of three steps: (i) data transformation involving the generation of new features based on transforming of raw data, (ii) feature extraction involving the learning of a classifier based on the AdaBoost algorithm and the use of training data consisting of the transformed features, and (iii) parameter determination and pattern recognition involving the determination of parameters based on the features generated in (ii) and the use of the parameters as training data for deep learning algorithms to be used to recognize human activities. Compared to existing approaches, this proposed approach has the advantageous characteristics that it is simple and robust. The proposed approach has been tested with a number of experiments performed on a relatively small real dataset. The experimental results indicate that using the proposed method, human activities can be more accurately recognized even with smaller training data size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源