论文标题
在Oplax 3函数的概念上
On a notion of oplax 3-functor
论文作者
论文摘要
我们介绍了标准化oplax $ 3 $ functor的概念,适用于按照东方的组合制剂,适用于严格的$ 3 $类别的基本同型理论。我们表明,任何这样的形态都会引起街头神经之间的简单集的形态,我们表征了来自归一化oplax $ 3 $ functors的简单组合的形态。这使我们能够证明归一化的Oplax $ 3 $ functors组成。最后,我们为归一化的Oplax $ 3 $ functors构建了一个严格的化,其源为$ 1 $ - 类别,而没有分式 - 单声道或拆分表。
We introduce a notion of normalised oplax $3$-functor suitable for the elementary homotopy theory of strict $3$-categories, following the combinatorics of orientals. We show that any such morphism induces a morphism of simplicial sets between the Street nerves and we characterise those morphisms of simplicial sets coming from normalised oplax $3$-functors. This allows us to prove that normalised oplax $3$-functors compose. Finally we construct a strictification for normalised oplax $3$-functors whose source is a $1$-category without split-monos or split-epis.