论文标题

跨图纸归一化组成结构

Normalizing Compositional Structures Across Graphbanks

论文作者

Donatelli, Lucia, Groschwitz, Jonas, Koller, Alexander, Lindemann, Matthias, Weißenhorn, Pia

论文摘要

各种基于图的含义表示(MRS)的出现引发了关于如何充分代表语义结构的重要对话。这些MRS表现出反映不同理论和设计考虑因素的结构差异,对统一的语言分析和跨框架语义解析提出了挑战。在这里,我们提出了MRS之间哪些设计差异的问题是有意义的和具有语义根的,哪些是肤浅的。我们提出了一种在组成水平上MRS之间差异归一化的方法(Lindemann等,2019),发现我们可以使用语言基础规则将大多数发散现象标准化。我们的工作大大增加了MRS和MRS与改进多任务学习(MTL)在低资源环境中的匹配,这证明了仔细的MR设计分析和比较的有用性。

The emergence of a variety of graph-based meaning representations (MRs) has sparked an important conversation about how to adequately represent semantic structure. These MRs exhibit structural differences that reflect different theoretical and design considerations, presenting challenges to uniform linguistic analysis and cross-framework semantic parsing. Here, we ask the question of which design differences between MRs are meaningful and semantically-rooted, and which are superficial. We present a methodology for normalizing discrepancies between MRs at the compositional level (Lindemann et al., 2019), finding that we can normalize the majority of divergent phenomena using linguistically-grounded rules. Our work significantly increases the match in compositional structure between MRs and improves multi-task learning (MTL) in a low-resource setting, demonstrating the usefulness of careful MR design analysis and comparison.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源