论文标题

Bloch振荡中的拓扑摆动

Topological swing in Bloch oscillations

论文作者

Upreti, L. K., Evain, C., Randoux, S., Suret, P., Amo, A., Delplace, P.

论文摘要

我们报告了受电场的量子步行中的波袋的新振荡,这些量子磁场会装饰绝缘子的通常的Bloch-Zener振荡。在这些振荡的一个BLOCH周期内的转弯点(或亚振荡)的数量受到准谱系的绕组的控制。因此,这提供了可以实验探测的定期驱动系统的拓扑特性的新物理表现。我们的模型基于面向散射网络,在光子和冷原子设置中很容易实现。

We report new oscillations of wavepackets in quantum walks subjected to electric fields, that decorate the usual Bloch-Zener oscillations of insulators. The number of turning points (or sub-oscillations) within one Bloch period of these oscillations is found to be governed by the winding of the quasienergy spectrum. Thus, this provides a new physical manifestation of a topological property of periodically driven systems that can be probed experimentally. Our model, based on an oriented scattering network, is readily implementable in photonic and cold atomic setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源