论文标题
Bloch振荡中的拓扑摆动
Topological swing in Bloch oscillations
论文作者
论文摘要
我们报告了受电场的量子步行中的波袋的新振荡,这些量子磁场会装饰绝缘子的通常的Bloch-Zener振荡。在这些振荡的一个BLOCH周期内的转弯点(或亚振荡)的数量受到准谱系的绕组的控制。因此,这提供了可以实验探测的定期驱动系统的拓扑特性的新物理表现。我们的模型基于面向散射网络,在光子和冷原子设置中很容易实现。
We report new oscillations of wavepackets in quantum walks subjected to electric fields, that decorate the usual Bloch-Zener oscillations of insulators. The number of turning points (or sub-oscillations) within one Bloch period of these oscillations is found to be governed by the winding of the quasienergy spectrum. Thus, this provides a new physical manifestation of a topological property of periodically driven systems that can be probed experimentally. Our model, based on an oriented scattering network, is readily implementable in photonic and cold atomic setups.