论文标题

电离:可能解释星形区域中平均磁盘大小的差异

Ionization: a possible explanation for the difference of mean disk sizes in star-forming regions

论文作者

Kuffmeier, M., Zhao, B., Caselli, P.

论文摘要

在类似年龄的星形区域中对恒星形成区域的原球盘的调查显示,某些区域之间的平均磁盘质量有显着差异。例如,猎户座星云簇(ONC)和Corona Australis(CRA)中的磁盘平均比狼疮,金牛座,Chamaeleon I或Ophiuchus所观察到的磁盘要小。与以前在进化后期研究磁盘截断的模型相反,我们研究磁盘是否已经出生于更大的恒星形成区域中系统较小的磁盘大小,这是由于电离速率增强的结果。假设有各种宇宙射线电离速率,我们使用化学网络计算了双极扩散和欧姆消散的电阻率,并执行2D非理想的磁流失动力学原动力学原动力学原理塌陷模拟。更高的电离速率会导致更强的磁制动,从而形成较小的磁盘。考虑到最近的发现,即原始恒星充当宇宙射线的锻造,并且仅考虑在倒塌阶段的轻度衰减,我们表明,在诸如ONC或CRA之类的星形区域中,平均宇宙射线电离率很高,可以解释这些区域中较小磁盘的检测。我们的结果表明,平均而言,电离速率较高会导致形成较小的磁盘。因此,相似年龄区域中的较小磁盘可能是不同水平的电离,并且不仅是通过外部光蒸发磁盘截断引起的。我们强烈鼓励观察结果,以测量不同星形形成区域的宇宙射线电离度,以检验我们的假设。

Surveys of protoplanetary disks in star-forming regions of similar age revealed significant variations in average disk mass between some regions. For instance, disks in the Orion Nebular Cluster (ONC) and Corona Australis (CrA) are on average smaller than disks observed in Lupus, Taurus, Chamaeleon I or Ophiuchus. In contrast to previous models that study truncation of disks at a late stage of their evolution, we investigate whether disks may already be born with systematically smaller disk sizes in more massive star-forming regions as a consequence of enhanced ionization rates. Assuming various cosmic-ray ionization rates, we compute the resistivities for ambipolar diffusion and Ohmic dissipation with a chemical network, and perform 2D non-ideal magnetohydrodynamical protostellar collapse simulations. A higher ionization rate leads to stronger magnetic braking, and hence to the formation of smaller disks. Accounting for recent findings that protostars act as forges of cosmic rays and considering only mild attenuation during the collapse phase, we show that a high average cosmic-ray ionization rate in star-forming regions like the ONC or CrA can explain the detection of smaller disks in these regions. Our results show that on average a higher ionization rate leads to the formation of smaller disks. Therefore, smaller disks in regions of similar age can be the consequence of different levels of ionization, and may not exclusively be caused by disk truncation via external photoevaporation. We strongly encourage observations that allow measuring the cosmic-ray ionization degrees in different star-forming regions to test our hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源