论文标题
关于先验的整个功能的蹦极组
On Bungee Set of Composition of Transcendental Entire Functions
论文作者
论文摘要
令$ f $为整个功能。对于$ n \ in \ mathbb {n},$ let $ f^{n} $表示$ n^{th} $ iTerate $ f $。令$ i(f)= \ {z \ in \ mathbb {c}:f^n \ rightarrow \ infty $ as $ n \ rightarrow \ rightarrow \ infty \} $和$ k(f)= \ {z:\ {z:\ textrm f^n(z)| \ leq r \ textrm {for} n \ geq 0 \}。 $然后$ \ mathbb {c} \ \ setminus(i(f)\ cup k(f))$ bu(f)$表示为$ f $的bungee集。在本文中,我们给出了$ bu(f)$的替代定义,该定义非常易于使用,我们通过证明蹦极组的某些属性的复合材料套件的某些属性以及整个功能的蹦极组集的一组。
Let $f$ be a transcendental entire function. For $n \in \mathbb{N},$ let $ f^{n}$ denote the $n^{th}$ iterate of $f$. Let $ I(f) = \{z \in \mathbb{C} : f^n \rightarrow \infty $ as $ n \rightarrow \infty \} $ and $ K(f) = \{z: \textrm{ there exists } R > 0 \textrm{ such that } | f^n(z) | \leq R \textrm{ for } n \geq 0 \}. $ Then the set $ \mathbb{C}\ \setminus (I(f) \cup K(f)) $ denoted by $ BU(f) $ is called Bungee set of $f$. In this paper we give an alternate definition for $ BU(f)$ which is very easy to work with, and we illustrate it by proving some properties of Bungee sets of composite transcendental entire functions and also of Bungee sets of permutable transcendental entire functions.