论文标题

REREX:模型 - 反应关系模型解释器

RelEx: A Model-Agnostic Relational Model Explainer

论文作者

Zhang, Yue, Defazio, David, Ramesh, Arti

论文摘要

近年来,在改善机器学习模型的可解释性方面取得了长足的进步。这是必不可少的,因为具有数百万个参数的复杂深度学习模型产生了最新的结果,但是几乎不可能解释其预测。尽管各种解释性技术取得了令人印象深刻的结果,但几乎所有这些都认为每个数据实例是独立的,并且分布相同(IID)。这不包括关系模型,例如统计关系学习(SRL)和最近流行的图形神经网络(GNNS),从而有很少的选择来解释它们。尽管确实有一项在解释GNN,GNN-解释器方面的工作,但他们假设访问模型的梯度来学习解释,这是根据其在非不同的关系模型和实用性的适用性方面限制的。在这项工作中,我们开发了Relex,这是一种模型不合时宜的关系解释器,以解释黑框关系模型,仅访问黑框的输出。 Relex能够解释任何关系模型,包括SRL模型和GNN。我们将Relex与IID解释模型的最先进的关系解释器,GNN解释器以及关系扩展进行比较,并表明Relex可以实现可比或更好的性能,同时剩余的模型 - 高速级别。

In recent years, considerable progress has been made on improving the interpretability of machine learning models. This is essential, as complex deep learning models with millions of parameters produce state of the art results, but it can be nearly impossible to explain their predictions. While various explainability techniques have achieved impressive results, nearly all of them assume each data instance to be independent and identically distributed (iid). This excludes relational models, such as Statistical Relational Learning (SRL), and the recently popular Graph Neural Networks (GNNs), resulting in few options to explain them. While there does exist one work on explaining GNNs, GNN-Explainer, they assume access to the gradients of the model to learn explanations, which is restrictive in terms of its applicability across non-differentiable relational models and practicality. In this work, we develop RelEx, a model-agnostic relational explainer to explain black-box relational models with only access to the outputs of the black-box. RelEx is able to explain any relational model, including SRL models and GNNs. We compare RelEx to the state-of-the-art relational explainer, GNN-Explainer, and relational extensions of iid explanation models and show that RelEx achieves comparable or better performance, while remaining model-agnostic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源