论文标题
拥挤环境中的通用粒子动力学分布
Universal Particle Kinetic Distribution in Crowded Environments
论文作者
论文摘要
我们在不同粒子péclet数字($ pe^*$)的异质,拥挤的环境中研究许多粒子运输。我们证明了修改后的中nakagami- $ m $函数描述了粒子沉积发生时粒子速度概率分布。我们通过与文献中的各种粒子类型的新拉格朗日模拟以及实验数据进行比较来评估该功能的普遍性。我们将函数的物理含义解释为用$ pe^*$来解释粒子沉积的能力,以及粒子释放的能量屏障和颗粒扩散能量之间的竞争。
We study many-particle transport in heterogeneous, crowded environments at different particle Péclet numbers ($Pe^*$). We demonstrate that a modified Nakagami-$m$ function describes particle velocity probability distributions when particle deposition occurs. We assess the universality of said function through comparison against new Lagrangian simulations of various particle types as well as experimental data from the literature. We construe the function's physical meaning as its ability to explain particle deposition in terms of $Pe^*$ and the competition between distributions of energy barriers for particle release and particles' diffusive energy.