论文标题

在广义统计力学的背景下,杰克逊和豪斯多夫衍生物之间的联系

The connection between Jackson and Hausdorff derivatives in the context of generalized statistical mechanics

论文作者

Marinho, Andre A., Viswanathan, G. M., Brito, Francisco A., Bezerra, C. G.

论文摘要

在文献中,人们可以发现常规莱布尼兹衍生物的许多概括,例如杰克逊衍生物,tsallis衍生物和豪斯多夫衍生物。在本文中,我们介绍了杰克逊衍生物与最近提出的Hausdorff衍生产品之间的联系。一方面,Hausdorff衍生物先前与呈现分形方面的系统中的非扩展性相关。另一方面,杰克逊衍生物具有坚实的数学基础,因为它是普通导数的$ \叠加{q} $ - 类似物,并且也出现在Quantum conculus中。从量子变形的$ \叠加{q} $ - 代数我们获得杰克逊衍生物,然后解决$ n $ noteracting量子振荡器的问题。我们在量子宏伟的分区函数中进行扩展,从中,我们从中获得了与杰克逊衍生产品有关的参数$ \ overline {q} $,而参数$ζ$和$ q $分别与Hausdorff衍生产品和tsallis衍生物有关。

In literature one can find many generalizations of the usual Leibniz derivative, such as Jackson derivative, Tsallis derivative and Hausdorff derivative. In this article we present a connection between Jackson derivative and recently proposed Hausdorff derivative. On one hand, the Hausdorff derivative has been previously associated with non-extensivity in systems presenting fractal aspects. On the other hand, the Jackson derivative has a solid mathematical basis because it is the $\overline{q}$-analog of the ordinary derivative and it also arises in quantum calculus. From a quantum deformed $\overline{q}$-algebra we obtain the Jackson derivative and then address the problem of $N$ non-interacting quantum oscillators. We perform an expansion in the quantum grand partition function from which we obtain a relationship between the parameter $\overline{q}$, related to Jackson derivative, and the parameters $ζ$ and $q$ related to Hausdorff derivative and Tsallis derivative, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源