论文标题
公平蛋糕部单调的可能性比
Fair Cake Division Under Monotone Likelihood Ratios
论文作者
论文摘要
这项工作为经典的蛋糕切割问题开发了算法结果,在这些问题中,需要在具有独特偏好的代理商中分配可分裂的异质资源(以蛋糕为模型)。我们专注于蛋糕切割的标准配方,每个代理必须收到连续的蛋糕。尽管该设置中存在多个硬度结果,以寻找公平/有效的蛋糕分区,但我们表明,如果代理的价值密度满足单位酮的可能性比率(MLRP),则对各种公平和经济效率的概念都具有强大的算法结果。 通过MLRP解决蛋糕切割实例,首先,我们开发了一种算法,该算法找到了蛋糕部(带有连接的零件),这些算法是无嫉妒的,直至任意精度。我们算法的时间复杂性在代理的数量和基础Lipschitz常数的位复杂性中是多项式。我们获得了最大化社会(功利主义)和平等主义福利的类似积极结果。此外,我们表明,在MLRP下,最大化NASH社会福利的问题承认了完全多项式近似方案(FPTA)。 许多分销系列都带有MLRP。特别是,如果所有值密度都属于以下任何一个家庭:高斯(具有相同的差异),线性,二项式,泊松和指数分布。此外,众所周知,任何对数符合函数的线性翻译都满足MLRP。因此,当代理的价值密度是以下(log-concave)分布的线性翻译时,我们的结果也会成立:拉普拉斯,伽马,β,beta,subbotin,chi-square,dirichlet和logistic。因此,通过MLRP,当前的工作获得了多个分布家族的新型蛋糕切割算法。
This work develops algorithmic results for the classic cake-cutting problem in which a divisible, heterogeneous resource (modeled as a cake) needs to be partitioned among agents with distinct preferences. We focus on a standard formulation of cake cutting wherein each agent must receive a contiguous piece of the cake. While multiple hardness results exist in this setup for finding fair/efficient cake divisions, we show that, if the value densities of the agents satisfy the monotone likelihood ratio property (MLRP), then strong algorithmic results hold for various notions of fairness and economic efficiency. Addressing cake-cutting instances with MLRP, first we develop an algorithm that finds cake divisions (with connected pieces) that are envy-free, up to an arbitrary precision. The time complexity of our algorithm is polynomial in the number of agents and the bit complexity of an underlying Lipschitz constant. We obtain similar positive results for maximizing social (utilitarian) and egalitarian welfare. In addition, we show that, under MLRP, the problem of maximizing Nash social welfare admits a fully polynomial-time approximation scheme (FPTAS). Many distribution families bear MLRP. In particular, this property holds if all the value densities belong to any one of the following families: Gaussian (with the same variance), linear, binomial, Poisson, and exponential distributions. Furthermore, it is known that linear translations of any log-concave function satisfy MLRP. Therefore, our results also hold when the value densities of the agents are linear translations of the following (log-concave) distributions: Laplace, gamma, beta, Subbotin, chi-square, Dirichlet, and logistic. Hence, through MLRP, the current work obtains novel cake-cutting algorithms for multiple distribution families.