论文标题

基于增强的多代理深入学习的主动分配系统的分布式电压调节

Distributed Voltage Regulation of Active Distribution System Based on Enhanced Multi-agent Deep Reinforcement Learning

论文作者

Cao, Di, Zhao, Junbo, Hu, Weihao, Ding, Fei, Huang, Qi, Chen, Zhe

论文摘要

本文提出了基于频谱聚类和增强的多代理深钢筋学习(MADRL)算法的数据驱动的分布式电压控制方法。通过无监督的聚类,可以根据电压和反应性功率灵敏度将整个分配系统分解为几个子网络。然后,每个子网络的分布式控制问题被建模为Markov游戏,并通过增强的MADRL算法解决,其中每个子网络都是自适应剂建模的。每个代理中使用深层神经网络来近似策略功能和动作值函数。所有代理都经过集中培训,以学习最佳的协调电压法规策略,同时以分布式方式执行以仅根据本地信息做出决策。提出的方法可以大大降低通信和系统参数知识的要求。它还有效地处理了不确定性,可以根据最新的本地信息提供在线协调的控制。与IEEE 33-BUS和123个总线系统的其他基于模型和数据驱动的方法的比较结果证明了该方法的有效性和好处。

This paper proposes a data-driven distributed voltage control approach based on the spectrum clustering and the enhanced multi-agent deep reinforcement learning (MADRL) algorithm. Via the unsupervised clustering, the whole distribution system can be decomposed into several sub-networks according to the voltage and reactive power sensitivity. Then, the distributed control problem of each sub-network is modeled as Markov games and solved by the enhanced MADRL algorithm, where each sub-network is modeled as an adaptive agent. Deep neural networks are used in each agent to approximate the policy function and the action value function. All agents are centrally trained to learn the optimal coordinated voltage regulation strategy while executed in a distributed manner to make decisions based on only local information. The proposed method can significantly reduce the requirements of communications and knowledge of system parameters. It also effectively deals with uncertainties and can provide online coordinated control based on the latest local information. Comparison results with other existing model-based and data-driven methods on IEEE 33-bus and 123-bus systems demonstrate the effectiveness and benefits of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源