论文标题

贝叶斯优化与输入不确定性降低

Bayesian Optimisation vs. Input Uncertainty Reduction

论文作者

Ungredda, Juan, Pearce, Michael, Branke, Juergen

论文摘要

模拟器通常需要根据现实世界数据估算的校准输入,并且估算的质量可能会严重影响模拟输出。特别是在执行模拟优化以找到最佳解决方案时,输入中的不确定性会显着影响所找到的解决方案的质量。一种补救措施是搜索在不确定的输入范围内平均具有最佳性能的解决方案,从而产生最佳的折衷解决方案。我们考虑用户可以在运行模拟或收集现实世界数据之间进行选择的更通用的设置。用户可以选择输入和解决方案,并观察模拟输出,或者查询外部数据源,以改善输入估算,从而搜索更集中,较少损害的解决方案。我们明确检查模拟和真实数据收集之间的权衡,以找到具有真实输入的模拟器的最佳解决方案。使用信息过程的值,我们提出了一个新颖的统一仿真优化过程,称为贝叶斯信息收集和优化(BICO),在每次迭代中,它会自动确定两种操作(运行仿真或数据收集)中的哪一个更有益。数值实验表明,所提出的算法能够自动确定优化和数据收集之间的适当平衡。

Simulators often require calibration inputs estimated from real world data and the quality of the estimate can significantly affect simulation output. Particularly when performing simulation optimisation to find an optimal solution, the uncertainty in the inputs significantly affects the quality of the found solution. One remedy is to search for the solution that has the best performance on average over the uncertain range of inputs yielding an optimal compromise solution. We consider the more general setting where a user may choose between either running simulations or instead collecting real world data. A user may choose an input and a solution and observe the simulation output, or instead query an external data source improving the input estimate enabling the search for a more focused, less compromised solution. We explicitly examine the trade-off between simulation and real data collection in order to find the optimal solution of the simulator with the true inputs. Using a value of information procedure, we propose a novel unified simulation optimisation procedure called Bayesian Information Collection and Optimisation (BICO) that, in each iteration, automatically determines which of the two actions (running simulations or data collection) is more beneficial. Numerical experiments demonstrate that the proposed algorithm is able to automatically determine an appropriate balance between optimisation and data collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源