论文标题
二聚体嘎嘎作用模式在出色的声音导体中诱导低导热率
Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor
论文作者
论文摘要
具有较大声速的实心表现出更高的晶格导热率(K_ {LAT})。 Diamond是一个突出的实例,其平均音速为14400 M S-1,K_ {LAT}为2300 W M-1 K-1。在这里,我们报告了一个极端的例外,Cup2的平均声速为4155 M S-1,与GAAS相当,但是单晶在室温下显示出非常低的晶格导热率,约为4 W M-1 K-1,比GAAS小的数量级。为了理解这种令人困惑的热运输行为,我们通过将中子散射技术与第一原理模拟结合在一起,对原子结构和晶格动力学进行了彻底研究。 Cu原子形成二聚体夹在分层的P原子网络之间,二聚体振动为嘎嘎声模式,频率约为11 MeV。该模式表现为非常昂贵的声音,并且强烈散布了声音声子,以达到低k_ {lat}。这种分层结构中的这种二聚体嘎嘎作用可能会提供前所未有的策略,用于抑制热传导而无需涉及原子障碍。
A solid with larger sound speeds exhibits higher lattice thermal conductivity (k_{lat}). Diamond is a prominent instance where its mean sound speed is 14400 m s-1 and k_{lat} is 2300 W m-1 K-1. Here, we report an extreme exception that CuP2 has quite large mean sound speeds of 4155 m s-1, comparable to GaAs, but the single crystals show a very low lattice thermal conductivity of about 4 W m-1 K-1 at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structure and lattice dynamics by combining neutron scattering techniques with first-principles simulations. Cu atoms form dimers sandwiched in between the layered P atomic networks and the dimers vibrate as a rattling mode with frequency around 11 meV. This mode is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low k_{lat}. Such a dimer rattling behavior in layered structures might offer an unprecedented strategy for suppressing thermal conduction without involving atomic disorder.