论文标题

三倍的稳定条件,消失了Chern课程

Stability conditions on threefolds with vanishing Chern classes

论文作者

Sun, Hao Max

论文摘要

我们证明了Bogomolov-Gieseker型不平等,由拜耳,Macri和Toda猜想三倍,具有可半固定的切线束,并消失了任何特征的Chern类,最初是由拜耳,麦克里和斯特拉里在特征性零中证明的。这给出了这三倍的布里奇兰稳定性条件的存在。作为应用程序,我们获得了Reider Type定理,并在任何特征中确认了此类三倍的藤田的猜想。

We prove the Bogomolov-Gieseker type inequality conjectured by Bayer, Macri and Toda for threefolds with semistable tangent bundles and vanishing Chern classes in any characteristic, which was originally proved by Bayer, Macri and Stellari in characteristic zero. This gives the existence of Bridgeland stability conditions on such threefolds. As applications, we obtain Reider type theorem and confirm Fujita's conjecture for such threefolds in any characteristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源